Перейти на старую версию сайта

JMS, Vol. 59, No. 6, 2023


GEOMECHANICS


OPEN PIT MINE SLOPE STABILITY: METHODOLOGICAL FRAMEWORK
V. L. Yakovlev*, A. V. Yakovlev**, and E. S. Shimkiv

Institute of Mining, Ural Branch, Russian Academy of Sciences,
Yekaterinburg, 620075 Russia
*e-mail: direct@igduran.ru
**e-mail: lubk_igd@mail.ru

The article describes the development stages of an adequate regulatory structure for the slope stability in open pit mines. Some supplementary factors that have influence on stability of slopes in open pit mines in the gravity–tectonic stress field are discussed. The main trends of research of pitwall rock mass in operating surface mines are presented, and the necessity of determining the tectonic stresses in pitwall rock mass and taking into account their impact on slope stability is emphasized. The algorithm is developed for justifying slope parameters for open pit mines under tectonic stresses, the drilling-and-blasting principles are formulated for the operation in pitwall rock mass, and the methods are proposed to mitigate the blasting-induced impact on adjacent rocks.

Open pit mine, pitwall, bench, tectonic stresses, stress–strain behavior, structure, cracks, stability, drilling and blasting

DOI: 10.1134/S1062739123060017

REFERENCES
1. Makarov, A., Livinsky, I., Spirin, V., and Pavlovich, A., Regulation of Open Pit Slope Stability in Russia, Slope Stability 2020—Proc. of the 2020 Int. Symp. on Slope Stability in Open Pitch Min. and Civil Eng., Australian Centre for Geomechanics, 2020, pp. 155–164.
2. Rukovodstvo po opredeleniyu optimal’nykh uglov naklona bortov kar’erakh i itkosov otvalov (Optimal Slope Angle Manual for Open Pits and Dumps), Leningrad: VNIMI, 1962.
3. Metodicheskie ukazaniya po opredelniyu uglov naklona bortov, otkosov ustupov i otvalov, stroyashchikhsya i ekspluatiruemykh kar’erov (Slope Angle Guidelines for Dumps and Open Pits under Construction and in Operation), Leningrad: VNIMI, 1972.
4. Instruktsiya po nablyudeniyam za deformatsiyami bortov, otkosov ustupov i otvalov na kar’erakh i razrabotke meropriyatii po obespecheniyu ikh ustoichivosti (Instruction to Monitoring Deformations and to Prevent Them on Slopes of Open Pits and Dumps), Leningrad: VNIMI, 1971.
5. Pravila obsepecheniya ustoichivosti otkosov na ugol’nykh razrezakh (Slope Stability Regulations for Open Pit Coal Mines), Saint-Petersburg: VNIMI, 1998.
6. Yakovlev, A.V., Pitwall Slope Stability in Strong Rock Masses, Geotechnology and Subsoil Science—Melnikov’s Lectures 1998—International Conference, Yekaterinburg: UrO RAN, 1998, vol. 2, pp. 199–205.
7. Yakovlev, V.L., Sashurin, A.D., Zubkov, A.V., and Yakovlev, A.V., Geomechanical Aspects of Problem on Open Mining of Deposits, Journal of Mining Science, 2001, vol. 37, no. 4, pp. 367–370.
8. Yakovlev, A.V. and Ermakov, N.I., Ustoichivost’ bortov rudnykh kar’erov pri deistvii tektonicheskikh napryazhenii v massive (Pitwall Stability under Tectonic Stresses in Rock Mass), Yekaterinburg: IGD UrO RAN, 2006.
9. Yakovlev, V.L. and Yakovlev, A.V., Estimate of Stress State in Rock Mass Adjacent to Open Pit Walls, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 247–253.
10. Yakovlev, A.V. and Ermakov, N.I., Metodika izucheniya pribortovykh massivov dlya prognozirovaniya ustoichovosti bortov kar’erov (Analysis Procedure of Pitwall Rock Mass for Slope Stability Prediction in Open Pits), Yekaterinburg: UrO RAN, 2008.
11. Zoteev, V.G. and Zoteev, O.V., Essentiality of Improvement of Regulatory and Procedural Framework for Geomechanical Support of Open Pit Mining, Gornyi Zhurnal, 2010, no. 1, pp. 66–68.
12. Rybin, V.V., Zhirov, D.V., Melikhova, G.S., and Klimov, S.A., Integrated Procedure of Structural Analysis and Geomechanical Monitoring of Rock Mass for Deep Open Pit Design and Operation, Sovrem. Tektonofiz. Metody i rezul’taty, 2011, pp. 100–109.
13. Kozhukhovsky, A.V., Zav’aylov, A.A., Kozyrev, A.A., Sery, S.S., and Dunaev, V.A., Technological Innovations in Prediction and Monitoring of Slope Stability in Deep Open Pit Mines, Gornyi Zhurnal, 2012, no. 10, pp. 29–35.
14. Mochalov, A.M., Korozov, K.V., Norvatov, Yu.A., Il’in, M.D. et al., Comparison of Russian and Foreign Practices of Pitwall Slope Stability Analysis, Deep Open Pit Mines: Proceedings of All-Russian Conference with International Participation, Apatity–Saint-Petersburg: GoI KNTS RAN, 2012, pp. 340–352.
15. Mochalov, A.M., Ishutin, S.A., Pavlovich, A.A., and Sapachev, R.Yu., Pitwll Stability Assessment Using Domestic and Foreign Software, Zap. Gorn. Inst., 2012, vol. 199, pp. 219–226.
16. Tsirel, S.V., Zuev, B.Yu., and Pavlovich, A.A., The Influence of Earthquakes on Open-Pit Slope Stability, Int. J. Geosciences, 2012, vol. 3, pp. 799–808.
17. Kozyrev, A.A. and Rybin, V.V., Geomechanical Validation of Rational Designs of Pit Walls in Rock Mass under High Tectonic Stresses, J. Fundament. Appl. Min. Sci., 2015, vol. 2, pp. 245–250.
18. Livinsky, I.S., Mitrofanov, A.F., and Makarov, A.B., Complex Geomechanical Modeling: Structure, Geology, Reasonable Sufficiency, Gornyi Zhurnal, 2017, no. 8, pp. 51–55.
19. Lyashenko, V.I., Development of Scientific and Technical Basis for Complex-Structure Rock Mass Monitoring. Report 2, Mining Informational and Analytical Bulleting—GIAB, 2013, no. 3, pp. 123–141.
20. Tsirel’ S.V. and Pavlovich, A.A., Challenges and Advancement in Geomechanical Justification of Pit Wall Designs, Gornyi Zhurnal, 2017, no. 7, pp. 39–45.
21. Zakharov, V.N., Ryl’nikova, M.V., and Nikiforova, I.L., Scientific and Methodical Framework for Geotechnical System Design in Open Pit Mining, Mining Informational and Analytical Bulleting—GIAB, no. S37, pp. 13–26.
22. Zoteev, V.G., Makarov, A.B., and Epshtein, I.V., Applicability of Pitwall Design Manual in modern Russia, Zoloto Tekhnologii, 2018, no. 1, pp. 52–57.
23. Ryl’nikova, M.V., Zoteev, O.V., and Nikifovorova, I.L., Regulatory Framework for Slope Stability of Pitwall and Dumps, Gorn. Prom., 2018, no. 3, pp. 95–98.
24. Pravila obespecheniya ustoichivosti bortov i ustupov kar’erov, razrerzov i otkosov otvalov (Regulators for Slope Stability for Open Pits, Quarries and Dumps). Approved by Rostekhnadzor, Order No. 439 dated 13 November 2020.
25. Read, J. and Stacey, P., Guidelines for Open Pit Slope Design, Australia, CSIRО, 2009.
26. Makarov, A.B. (Ed.), Rokovodstvo po proektirovaniyu bortov kar’erov (Guidelines for Open Pit Slope Design), Yekaterinburg: Pravoved, 2015.
27. Zoteev, V.G., Pit Slope Design: Domestic and Foreign Practice, Gorn. Zh., 2017, no. 1, pp. 85–89.
28. Bieniawski, Z.T., Engineering Rock Mass Classifications, New York, Wiley, 1989. — 272 р.
29. Hoek, E., Caranza-Torres, C., and Corcum, B., Hoek—Brown Failure Criterion, Min. Innovation Technol., Proc. North Amer. Rock Mech. Soc., 2002, pp. 267–273.
30. Hormazabal, E., Rovira, F., Walker, M., and Carranza-Torres, C., Analysis and Design of Slopes for Rajo Sur, an Open Pit Mine Next to the Subsidence Crater of El Teniente Mine in Chile, Proc. of Slope Stability 2009, Santiago, Universidad de Los Andes, 2009.
31. Tonderai Chiwaye, H., A comparison of the Limit Equilibrium and Numerical Modeling Approaches to Risk Analysis for Open Pit Mine Slopes, Dissertation for to Degree of Master of Sci. in Eng., Johannesburg: University of the Witwatersrand, 2010.
32. Taseko Mines Limited New Prosperity Gold-Copper Project, Preliminary Pit Slope Design, Knight Piesold Сonsulting, 2012.
33. Metodicheskie ukazaniya po izucheniyu massiva gornykh porod dlya obespecheniya ustoichivosti bortov i ustupov kar’erov, razrezov i otkosov otvalov (Guidelines on Rock Mass Analysis to Ensure Slope Stability in Pits, Quarries and Dumps), Moscow: IPKON RAN, 2022.
34. Metodicheskie ukazaniya po opredeleniyu parametrov bortov i ustupov kar’erov, razrezov i otkosov otvalov (Guidelines on Slope Design in Pits, Quarries and Dumps), Moscow: IPKON RAN, 2022.
35. Metodicheskie ukazaniya po otsenke riskov razvitiya deformatsii, monitoring i upravleniyu ustoichivost’yu bortov i ustupov kar’erov, razrezov i otkosov otvalov (Guidelines on Deformation Risk Assessment, Monitoring and Stability Control on Slopes of Pits, Quarries and Dumps), Moscow: IPKON RAN, 2022.


THE APPLICATION OF SHORTWAVE BAND GPR IN INVESTIGATION OF SURROUNDING ROCK-AND-LINING INTERFACE
V. N. Oparin, E. V. Denisova*, A. P. Khmelinin, K. O. Sokolov**, and A. I. Konurin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: slimthing@mail.ru
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
Yakutsk, 677980 Russia
**e-mail: k.sokolov@ro.ru

The Ground Penetrating Radar method is used to study a three-layered model of the surrounding rock–void–lining interface with regard to variation in the void thickness and in the electromagnetic properties of the void filler. The numerical modeling uses the method of finite differences in the time domain. The numerical modeling data are compared with the results of the physical simulation implemented using SIR-3000 GPR with the Model 52600 antenna having the working frequency of 2.6 GHz (S-band). It is found that the size of the void behind concrete lining and the electromagnetic properties of a material filling the void have influence on the accuracy of ranging to the lower boundary of the void and to the discontinuity in the form of a steel bolt located immediately behind the void in surrounding rock mass.

Concrete lining, void, interface, GPR, method of finite differences in time domain, numerical model, electromagnetic properties, radarogram

DOI: 10.1134/S1062739123060029

REFERENCES
1. Qin, H., Zhang, D., Tang, Y., and Wang, Y., Automatic Recognition of Tunnel Lining Elements from GPR Images Using Deep Convolutional Networks with Data Augmentation, Autom. Constr., 2021, vol. 130, 103830.
2. Qin, H., Tang, Y., Wang, Z., Xie, X., and Zhang, D., Shield Tunnel Grouting Layer Estimation Using Sliding Window Probabilistic Inversion of GPR Data, Tunn. Undergr. Sp. Technol., 2021, vol. 112, 103913.
3. McCann, D.M. and Forde, M.C., Review of NDT Methods in the Assessment of Concrete and Masonry Structures, NDT E Int., 2001, vol. 34, pp. 71–84.
4. Shaw, M.R., Millard, S.G., Molyneaux, T.C.K., Taylor, M.J., and Bungey, J.H., Location of Steel Reinforcement in Concrete Using Ground Penetrating Radar and Neural Networks, NDT E Int., 2004, vol. 38, pp. 203–212.
5. Gokhan, K. and Levent, E., Neural Network Based Inspection of Voids and Karst Conduits in Hydro-Electric Power Station Tunnels Using GPR, J. Appl. Geophys., 2018, vol. 151, pp. 194–204.
6. Feng, D., Wang, X., and Zhang, B., Specific Evaluation of Tunnel Lining Multi-Defects by All-Refined GPR Simulation Method Using Hybrid Algorithm of FETD and FDTD, Constr. Build. Mater., 2018, vol. 185, pp. 220–229.
7. Wu Xianlong, Bao Xiaohua, Shen Jun, Chen Xiangsheng, Cui, and Hongzhi, Evaluation of Void Defects Behind Tunnel Lining through GPR Forward Simulation, Sensors, 2022, vol. 22, 9702.
8. Hasan Istiaque and Yazdani Nur, An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar, Chinese J. Eng., 2016, pp. 1–7.
9. Li Chuan, Li Minmin, Yang Xiumei, Zhang Weiping, Fan Mingkun, Yang Xi, and Wang Lulu, Boundary Recognition of Tunnel Lining Void from Ground Penetrating Radar Data, J. Geophys. Eng., 2023, vol. 20.
10. Luo, T.X.H and Lai, W.W.L., GPR Pattern Recognition of Shallow Subsurface Air Voids, Tunn. Undergr. Sp. Technol., 2020, vol. 99, 103355.
11. Lee, S.J., Lee, J.W., Choi, Y.T., Lee, J.S., and Sagong, M., Analysis of GPR Signal Patterns by Tunnel Lining Thickness and Void Condition, J. Korean Soc. Railway, 2020, vol. 24, pp. 781–729.
12. Harseno, R.W., Lee, S.J., Kee, S.H., and Kim, S., Evaluation of Air-Voids Behind Concrete Tunnel Linings Using GPR Measurements, Remote Sens., 2022, vol. 14, 5438.
13. Parkinson Graham, Berger Klohn, and Ekes Csaba, Ground Penetrating Radar Evaluation of Concrete Tunnel Linings, 12th Int. Conf. on Ground Penetrating Radar, Birmingham, UK, 2008.
14. Takayama Jun-ya, Ohara Yuki, and Sun Wei, Nondestructive Evaluation of Air Voids in Concrete Structures Using Microwave Radar Technique, SICE J. Control, Meas., Syst. Integr., 2022, vol. 15, pp. 36–47.
15. Qin Hui, Xie Xiongyao, Tang Yu, and Wang Zhengzheng, Experimental Study on GPR Detection of Voids Inside and Behind Tunnel Linings, J. Env. & Eng. Geophys., 2020, vol. 25, pp. 65–74.
16. Saricicek Isil and Seren Aysel, Investigation Concrete Quality of Zigana and Torul Tunnels by Using GPR Method, 2015.
17. Liu, H., Deng, Z., Han, F., Xia, Y., Liu, Q.H., and Sato, M., Time–Frequency Analysis of Air-Coupled GPR Data for Identification of Delamination Between Pavement Layers, Constr. Build. Mater., 2017, vol. 154, pp. 1207–1215.
18. Dinh, K. and Gucunski, N., Factors Affecting the Detectability of Concrete Delamination in GPR Images, Constr. Build. Mater., 2021, vol. 274, 121837.
19. Takayama, J.-Y., Ohara, Y., and Sun, W., Nondestructive Evaluation of Air Voids in Concrete Structures Using Microwave Radar Technique, SCIE J. Control Meas. Syst. Integr., 2022, vol. 15, pp. 36–47.
20. Zubkovich, S.G., Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (Statistical Characteristics of Radio Signals Reflected from Ground Surface), Moscow: Sov. Radio, 1968.
21. Ruban, A.D., Baukov, Yu.N., and Shkuratnik, V.L., Gornaya geofizika. Elektrometricheskie metody geokontrolya. Ch. 3. Vysokochastotnye elektromagnitnye metody: ucheb. posob. (Mining Geophysics. Electrometric Methods of Geocontrol. Part III: High-Frequency Electromagnetic Methods: Educational Aid), Moscow: MGGU, 2002.
22. Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz, Recommendation ITU-R 2015. P. 2040-1. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-S !!PDF-E.pdf (accessed: 24.08.2023 г.).
23. Yee, K., Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, IEEE. Trans. Antennas. Propag., 1966, vol. 14, pp. 302–307.
24. Finite-Difference Time-Domain. Available at: https://www.gprmax.com (accessed: 24.08.2023).
25. Akhaury U., Giannakis I., and Warren C., Giannopoulos A. Machine Learning Based Forward Solver: An Automatic Framework in gprMax, 11th Int. Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2021.
26. Warren Craig, Giannopoulos Antonios, and Giannakis Iraklis. GprMax: Open Source Software to Simulate Electromagnetic Wave Propagation for Ground Penetrating Radar, Comput. Phys. Commun., 2016, vol. 209, no. 3.
27. Vladov, M.L. and Sudakova, M.S., Georadiolokatsiya. Ot fizicheskikh osnov do perspektivnykh napravlenii (Ground Penetrating Radar. From Physical Basics to Promising Trends), Moscow: Geos, 2017.
28. Xiao M., Chen C., and Su Z. The Calculation Method of Equivalent Dielectric Constant of Multi-Layer Underground Media, Geophys. Geochem. Explor., 2013, vol. 37, pp. 368–372.
29. Yelf R. Where is True Time Zero? Proc. 10th Int. Conf. on Grounds Penetrating Radar, Delft, The Netherlands, 2004, pp. 279–282.
30. Zadhoush Hossain, Giannopoulos Antonios, and Giannakis Iraklis, Optimizing the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models, Remote Sensing, 2021, vol. 13.
31. SIR-3000 GPR System. Available at: http://www.geophysical.com/sir3000.htm (accessed: 24.08.2023).
32. Baryshnikov, V., Khmelinin, A., and Denisova, E., GPR Detection of Inhomogeneities in Concrete Lining of Underground Tunnels, Journal of Mining Sciences, 2014, vol. 50, pp. 25–32.
33. Shkuratnik, V.L., Izmereniya v fizicheskom eksperimente (Measurements in Physical Experiment), Moscow: AGN, 2000.
34. Sukhobok, Yu.A., Pupatenko, V.V., and Stoyanovich, G.M., Osnovy rasshifrovki i interpretatsii radaorgamm: ucheb. posob. (Elements of Decoding and Interpretation of Radarograms: Educational Aid), Khabarovsk: DVGUPS, 2018.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


THERMAL STRESS STATE IN THE VICINITY OF UNDERGROUND ROADWAYS
V. M. Seryakov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
e-mail: vser@misd.ru

The article addresses the problem on thermal stresses and stress–strain behavior of rock mass during deep-level mining. The author proposes an approach to determining the stationary field of temperatures in the zone of mining with cemented paste backfill with single formation of stiffness matrix in the calculation. It is found that inclusion of the temperature change depthward rock mass in the analysis results in the increase in the initial horizontal stresses while the initial vertical stresses remain unaltered. The calculation method of stress redistribution in the course of mining with backfill, with the same stiffness matrix used at all calculation stages, is modified for taking into account the thermal stresses. The calculation of the thermal stress state of surrounding rocks and backfill is carried out for a case of mining with backfill in a gently dipping ore body.

Mineral deposit, great depth, rocks, temperature, stress state, mined-out stope, backfill, mining sequence, calculations, initial stress state, stiffness matrix, mining stages

DOI: 10.1134/S1062739123060030

REFERENCES
1. Kurlenya, M.V., Deep-Level Mineral Mining in Siberia and Russian Far East: Actual Objectives and Trends of Research, Journal of Mining Science, 2021, vol. 27, no. 4, pp. 539–545.
2. Goncharov, S.A., Termodinamika (Thermodynamics), Moscow: MGGU, 2002.
3. Bott, M., The Interior of the Earth. Structure, Contribution and Processes, Hodder Arnold, 1982.
4. Magnitsky, V.A., Vnutrennee stroenie i fizika Zemli (Internal Structure and Physics of the Earth), Moscow: Nedra, 1965.
5. Podstrigach, Ya.S., Teplouprugost’ tel neodnorodnoi struktury (Thermal Elasticity of Bodies with Nonuniform Structure), Moscow: Nauka, 1984.
6. Boley, B. and Weiner, J., Theory of Thermal Stresses, John Wiley and Sons, 1960.
7. Lykov, A.V., Teoriya teploprovodnosti (Theory of Thermal Conduction), Moscow: Vysh. Shkola, 1967.
8. Rekach, V.G., Rukovodstvo k resheniyu zadach po teorii uprugosti (Solution of Problems of Elasticity: Guide), Moscow: Vysh. Shkola, 1966.
9. Volkov, E.P. and Anushenkov, A.N., Razrabotka tekhnologii zakladki gornykh vyrabotok litymi tverdeyushchimi smesyami na osnove khvostov obogashcheniya (Technology of Backfill with Cemented Paste Mixtures Made of Processing Tailings), Krasnoyarsk: SFU, 2020.
10. Montyanova, A.N., Formirovanie zakladochnykh massivov pri razrabotke almaznykh mestorozhdenii v kriolitozone (Backfill in Diamond Mining in Permafrost Zone), Moscow: Gornaya kniga, 2005.
11. Seryakov, V.M., Stress Determination in Rock Mass with Regard to Sequence of Deep-Level Cut-and-Fill, Journal of Mining Science, 2021, vol. 57, no. 6, pp. 894–900.
12. Norrie, D.N. and Vriez, G., An Introduction to Finite Element Analysis, Academic Press, 1978.
13. Podgorny, S.A., Meretukov, Z.A., Koshevoi, E.P., and Kosachev, V.S., Finite Element Method in Solving Problems of Thermal Conduction, Vestn. Voronezh. gos. un. inzh. tekhnol., 2013, no. 2, pp. 10–15.
14. Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.
15. Seryakov, V.M., Development of Algorithms for Solving Thermal Conductivity Problems to Calculate Stress State of the Rock Mass with Regard to the Sequence of Stoping and Backfilling, Fundament. prikl. vopr. gorn. nauk, 2022, vol. 9, no. 3, pp. 54–59.
16. Petrochenkov, R.G., Vertical and Horizontal Stress Ratio in Uniform Rock Mass with Regard to Temperature Stresses, GIAB, 2000, no, 10, pp. 61–68.


DETERMINING TIME-TO-FAILURE IN ROCKS USING LONG-TERM STRENGTH CRITERION
A. M. Kovrizhnykh*, V. D. Baryshnikov**, and A. P. Khmelinin***

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: amkovr@mail.ru
**e-mail: v-baryshnikov@yandex.ru
***e-mail: hmelinin@misd.ru

The mathematical modeling of creep and long-term strength of rocks uses the non-associated flow rule. The authors propose a unified approach to the plasticity and creep processes. The theoretical calculations are compared with the testing data of different materials. In creep deformation in rocks, the applied problems on limit state of rock mass in plain strain are considered: pressure applied by a solid die block with flat bottom on rock mass limited by a horizontal plane and occupying the bottom part of a half-space; instability of pit wall or natural slope under different loads. These problems evaluate stresses in the limit state zones and the times-to-failure in rocks mass with regard to internal friction.

Rock mass creep, long-term strength, limit shear deformation, dilatancy, time-to-failure

DOI: 10.1134/S1062739123060042

REFERENCES
1. Kachanov, L.M., Teoriya polzuchesti (Theory of Creep), Moscow: Fizmatlit, 1960.
2. Rabotnov, Yu.N., Polzuchest’ elementov konstruktsii (Creep of Constructional Components), Moscow: Nauka, 1966.
3. Erzhanov, Zh.S., Teoriya polzuchesti gornykh porod i ee prilozheniya (Theory of Rock Creep and Applications), Alma-Ata: Nauka, 1964.
4. Sosnin, O.V., Gorev, B.V., and Nikitenko, A.F., Energetichskii variant teorii polzuchesti (Energy Variant of Creep Theory), Novosibirsk: Institut gidrodinamiki AN SSSR, 1986.
5. Lokoshchenko, A.M., Modelirovanie protsessa polzuchesti i dlitel’noi prochnosti materialov (Modeling Creep process and Long-Term Strength of Materials), Moscow: MGIU, 2007.
6. Hoff, N., The Necking and the Rupture of Rods Subjected to Constant Tensile Loads, J. Appl. Mech., 1953, vol. 20, no. 1.
7. Johnson, A.E., Complex-Stress Creep of Metals, Metallurgical Rev., 1960, vol. 5, no. 20, pp. 447–506.
8. Sdobyrev, V.P., Long-Term Strength of EI437B Alloy under Complex Stress, Izv. AN SSSR. OTN, 1958, no. 4, pp. 92–97.
9. Vyalov, S.S., Reologicheskie osnovy mekhaniki gruntov (Rheological Framework of Soil Mechanics), Moscow: Nauka, 1978.
10. Zaretsky, Yu.K. and Gorodetsky, S.E., Dilatancy of Frozen Ground and Construction of Deformation Theory of Creep, Gidtrotekhnich. Stroit., 1975, no. 2, pp. 15–18.
11. Scheidegger, A., Principles of Geodynamics, Springer Science and Business Media, 2012.
12. Kovrizhnykh, A.M., Variant of the Theory of Plastic Deformation in Rocks, Journal of Mining Science, 1983, vol. 19, no. 1, pp. 1–6.
13. Kovrizhnykh, A.M., Nikitenko, A.F., Baryshnikov, V.D., and Manakov, A.V., Long-Term Strength of Materials and Creep Equations Based on the Colomb–Mohr Criterion, Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, no. 6, pp. 871–877.
14. Kovrizhnykh, A.M., Limiting Stress of Metals and the Limiting State under Creep Conditions, Mechanics of Solids, 2009, vol. 44, no. 2, pp. 269–276.
15. Kovrizhnykh, A.M. Guzev, M.A., Odintsev, V.N., and Makarov, V.V., General Shear Model at Creep, Plasticity and Failure of Rocks, Fundament. Prikl. Vopr. Gorn. Nauk, 2021, vol. 8, no. 2, pp. 82–90.
16. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii. V primerakh i sadachakh (Mechanics of Underground Constructions. Examples and Problems), Moscow: Nedra, 1989.
17. Revuzhenko, A.F., Stazhevsky, S.B., and Shemyakin, E.I., Mechanism of Deformation of a Granular Material under High Shear, Journal of Mining Science, 1974, vol. 10, no. 3, pp. 374–377.
18. Tsytovich, N.A., Mekhanika gruntov (Soil Mechanics), Moscow: Vysh. Shkola, 1979.
19. Stavrogin, A.M and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
20. Mogi, K., Experimental Rock Mechanics, Geomechanics Research Series 3, London, 2007.
21. Terent’ev, V.F., Ustalost’ metallicheskikh materialov (Fatigue of Metallic Materials), Moscow: Nauka, 2002.
22. Zhdanov, G.S., Fizika tverdogo tela (Physics of Solid), Moscow: Lenand, 2021.


RECONSTRUCTION OF PALEOSTRESSES IN THE WEST OF SAKHALIN FROM TECTONOPHYSICAL RESEARCH FINDINGS
P. A. Kamenev* and A. V. Marinin

Institute of Marine Geology and Geophysics, Far East Branch, Russian Academy of Sciences, Yuzhno-Sakhalinsk, 693022 Russia
*e-mail: p.kamenev@imgg.ru
Institute of Physics of the Earth, Russian Academy of Sciences,
Moscow, 123422 Russia

The article discusses tectonic stresses determined in the West Sakhalin terrain using different tectonophysical methods. The reconstruction of the stress field in coal fields in Sakhalin is implemented using the graphical method of orientation finding of stress axes in fractures and faults (at 16 observation points). The supplementary on-site tectonophysical studies made it possible to estimate the preferred orientation of the main slickensides of different kinematics and to reconstruct on this basis the local stress tensors at 53 observation points. The typical stress state of the West Sakhalin terrain is horizontal tension.

Tectonic stresses, slickensides, jointing, coal fields of Sakhalin, West Sakhalin terrain, geomechanics

DOI: 10.1134/S1062739123060054

REFERENCES
1. Zoback, M.D., Reservoir Geomechanics, Cambridge: Cambridge University Press, 2007.
2. Dubinya, N., Tikhotsky, S., Bayuk, I., Beloborodov, D., Krasnova, M., Makarova, A., Rusina, O., and Fokin, I., Prediction of Physical-Mechanical Properties and In-Situ Stress State of Hydrocarbon Reservoirs from Experimental Data and Theoretical Modeling, SPE Russian Petroleum Technol. Conf., 2017.
3. Tronov, Yu.A., Kharakhinov, V.V., Kononov, V.E., and Pudikov, E.G., North-Tatar Oil and Gas Reservoir, Tikhookean. Geolog., 1987, no. 6, pp. 45–49.
4. Solntsevo Open Pit Mine—A Flagship of Coal Mining in Russia’s Far East, Ugol’, 2019, no. 3, pp. 36–39.
5. Tarasov, A.V. (Ed.), Nedra Sakhalinskoi oblasti (Sakhalin’s Mineral Wealth), Yuzhno-Sakhalinsk, 2013.
6. Novikov, Yu.N., Subsoil Use on the Sakhalin Shelf: Achievements and Problems, Neftegaz. geolog. Teor. Praktika, 2008, no. no. 3, pp. 1–12.
7. Ampilov, Yu.P., Sakhalinskie neftegazovye proekty vchera, segodnya, zavtra (Sakhalin’s Oil and Gas Projects Yesterday, Today and Tomorrow). Available at: https://www.researchgate.net/publication/336147912.
8. Zharov, A.E., Kirillova, G.L., Margulis, L.S., Chuiko, L.S., Kudel’kin, V.V., Varnavsky, V.G., and Gagaev, V.N., Geologiya, geodinamika i perspektivy neftegazonosnosti osadochnykh basseinov Tatrskogo proliva (Geology, Geodynamics and Oil and Gas Potential of the Tatar Strait), Vladivostok: Dalnauka, 2004.
9. Nechayuk, A.E. and Obzhirov, A.I., Structures and Oil and Gas Content in the Tatar Strait Reservoirs, Vestn. KRAUNTS. Nauki o Zemle, 2010, no. 2 (16), pp. 27–34.
10. Senin, B.V., Kerimov, V.Yu., Lavrenova, E.A., and Mustaev, R.N., Geodynamic Analysis and Regional Forecast of Oil and Gas Content in the Tatar Strain in the Sea of Japan Using Numerical Modeling Technologies, Tikhookean. Geolog., 2022, vol. 41, no. 5, pp. 41–59.
11. Golozubov, V.V., Kasatkin, S.A., Grannik, V.M., and Nechayuk, A.E., Deformations in the Later Cretaceous and Cenozoic Strata of the West Sakhalin Terrain, Geotektonika, 2012, no. 5, pp. 22–43.
12. Golozubov, V.V., Kasatkin, S.A., Malinovsky, A.I., Nechayuk, A.E., and Grannik, V.M., Dislocations in the Cretaceous and Cenozoic Strata of the West Sakhalin Terrain, Geotektonika, 2016, no. 4, pp. 105–120.
13. Sim, L.A., Bogomolov, L.M., Bryantseva, G.V., and Savvichev, P.A., Neotectonics and Tectonic Stresses of the Sakhalin Island, Geodynamics and Tectonophysics, 2017, vol. 8, no. 1, pp. 181–202.
14. Prytkov, V.A., and Vasilenko, V.F., Earth Surface Deformation of the Sakhalin Island from the GPS Data, Geodynamics and Tectonophysics, 2018, vol. 9, no. 2, pp. 503–514.
15. Grannik, V.M., Volcanic Rocks of the West Sakhalin Terrain on the Sakhalin Island, Dokl. Akad Nauk, 2016, vol. 470, no. 6, pp. 688–691.
16. Bogdanov, N.A. and Khain, V.E. (Eds.), Ob’yasnitel’naya zapiska k Tektonicheskoi karte Okhotomorskogo regiona masshtaba 1 : 2 500 000 (Explanatory Note for the Tectonic Map of the Sea of Okhotsk Region at a Scale of 1 : 2 500 000), Moscow: ILOVM, 2000.
17. Zharov, A.E., Accretion and Collison Structures of the Southeast Sakhalin, Dokl. Akad Nauk, 2003, vol. 393, no. 3, pp. 366–370.
18. Gladenkov, Yu.B., Bazhenov, O.K., Grechin, V.I., Margulis, L.S., and Sal’nikov, B.A., Kainozoi Sakhalina i ego neftegazonosnost’ (Sakhalin’s Cenozoic and Its Oil and Gas Content), Moscow: Geos, 2002.
19. Kharakhinov, V.V., Neftegazovaya geologiya Sakhalinskogo regiona (Petroleum Geology of the Sakhalin Region), Moscow: Nauchnyi mir, 2010.
20. Rozhdestvensky, V.S., Active Rifting in the Seas of Japan and Okhotsk and Tectonic Evolution of the Central Sakhalin Fault in the Cenozoic Era, Tekhookean. Geolog., 2008, no. 1, pp. 17–28.
21. Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Muller, K., Reinecker, B., Reiter, J., Tingay, K., Wenzel, F., Xie, F., Ziegler, M., Zoback, M.L., and Zoback, M.D., The world Stress Map Database Release 2016: Crustal Stress Pattern across Scales, Tectonophysics, 2018, vol. 744, pp. 484–498.
22. Leont’ev, A.V., Analysis of Natural Stresses According to the Measurement Results in Mines on the Territory of Northern Eurasia, Journal of Mining Science, 2001, vol. 37, no. 1, pp. 28–37.
23. Kozyrev, A.A. and Savchenko, N.S., Tectonic Stress Patterns in the Upper Crust, Fizika Zemli, 2009, no. 11, pp. 34–43.
24. Akhmedov, M.B., Shlyunkin, A.V., Luk’yanov, I.V., and Rebetsky, Yu.L., Modern Crustal Stress Field on the Global Stress Map Site of the Institute of Physics of the Earth, Russian Academy of Sciences, Modern Tectonophysics. Methods and Results: Proceedings of the 4th Youth Tectonophysics School–Workshop, Moscow: IFZ RAN, 2015, vol. 1, pp. 16–21.
25. Morozov, Yu.A., Rossiyskaya tektonofizika. K 100-letnemu yubileyu Mikhaila Vladimirovicha Gzovskogo: sb. statei (Russian Tectonophysics. In M.V. Gzovsky’s 100th Anniversary Commemoration: Collectted Works), Apatity: FITS KNTS RAN, 2019.
26. Savchenko, S.N., Estimate of Stress–Strain State of Rocks in the Area of Drilling Kola Ultradeep Well, Journal of Mining Science, 2004, vol. 40, no. 1, pp. 24–30.
27. Baryshnikov, V.D., Kurlenya, M.V., Leont’ev, A.V., Pirlya, K.V., and Popov, S.N., Stress–Strain State of the Nikolaevo Deposit, Journal of Mining Science, 1982, vol. 18, no. 2, pp. 89–96.
28. Ali, A.Kh., Marti, Sh, and Esa, R., The Advanced Method of Hydraulic Fracturing Using Geomechanical Modeling and Rock Mechancis—Technically Integrated Approach, Neftegaz. Obozren., 2002, pp. 75–83.
29. Ali, AKh., Braun, T., and Del’gado, R., Modeling Geomechanical Properties of Geological Medium as a Stress Decoding Tool, Neftegaz. Obozren., 2005, pp. 4–23.
30. Gzovsky, M.V., Osnovy tektoniki (Fundamentals of Tectonophysics), Moscow: Nauka, 1975.
31. Shpetalenko, L.P., Prediction of Small-Amplitude Fractures in Coal Fields in the Sakhalin, Geologiya i mineral’no-syr’evye resursy Sakhalina i Kuril’skikh ostrovov (Geology and Mineral Resources of the Sakhalin and Kuril Islands), Yuzhno-Sakhalinsk: Sakhalin. Otd. DKI, 1974, pp. 51–53.
32. Shpetalenko, L.P., Quantification of Tectonic Faulting in Coal Fields of Sakhalin, Geologiya i perspektivy neftegazonosnosti, rudnogo i nerudnogo syr’ya (Geology and Oil/Gas, Metallic and Nonmetallic Mineral Reserves Potential of the Soviet Far East), Yuzhno-Sakhalinsk: Sakhalin. Otd. DKI, 1973, pp. 91–93.
33. Shpetalenko, L.P., Chmykhalova, T.P., and Chainikova, M.V., Atlas tektonicheskikh struktur ugol’nykh mestorozhdenii Sakhalina (Atlas of Tectonic Structures in Coal Fields of the Sakhalin), Yuzhno-Sakhalinsk, 1976.
34. Rebetsky, Yu.L., Development of the Cataclastic Shearing Analysis for Evaluating Tectonic Stresses, Dokl. Akad. Nauk, 203, vol. 3, no. 2, pp. 237–241.
35. РRebetsky, Yu.L., Sim, L.A., and Marinin, A.V., Ot zerkal skol’zheniya k tektonicheskim napryazneiyam. Metody i algoritmy (From Slickensides to Tectonic Stresses. Methods and Algorithms), Moscow: Geos, 2017.
36. Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost’ gornykh massivov (Tectonic Stresses and Rock Mass Stress), Moscow: Akademkniga, 2007.
37. Kharakhinov, V.V., Gal’tsev-Bezyuk, S.D., and Tereshchenkov, A.A., Faults of the Sakhalin, Tikhookean. Geolog., 1984, no. 2, pp. 77–86.
38. Marinin, A.V., Rebetsky, Yu.L, Sim, L.A., Kamenev, P.A., Kostrov, Yu.V., Bondar’, I.V., Gordeev, N.A., and Degtyarev, V.A., Reconstruction of Tectonic Stresses on the Schmidt Peninsula, Sakhalin, Vestn. KRAUNTS. Nauki o Zemle, 2021, vol. 52, no. 4, pp. 73–88.
39. Kamenev, P.A., Marinin, A.V., Degtyarev, V.A., and Lukmanov, A.R., Reconstruction of Tectonic Stresses of the central Sakhalin, Vestn. KRAUNTS. Nauki o Zemle, 2023, no. 1, pp. 89–103.


NUMERICAL MODELING OF STRESS–STRAIN BEHAVIOR OF ROCK MASS IN THE COURSE OF MINING OF LOWER STRATA IN A SERIES
S. V. Rib, O. A. Petrova, A. M. Nikitina, V. A. Boloshin, and V. N. Fryanov*

Siberian State Industrial University,
Novokuznetsk, 654007 Russia
*e-mail: fryanov@sibsiu.ru

The features of mining of a coal series are described. The stress–strain behavior of rock mass during mining of the lower strata in the series is assessed with regard to the influence of coal pillars and upper level roadways. Different variants of location of a temporary roadway on the lower stratum in a series protected by a pillar are discussed. The implemented prediction of the stress–strain behavior of rock mass is adapted to the conditions of mines in the south of Kuzbass. This prediction is used to select the geomechanically safest variant of location of the temporary roadway.

Coal seam, series, stresses, displacements, increased rock pressure zone, rock mass, roadway, residual strength, pillar

DOI: 10.1134/S1062739123060066

REFERENCES
1. Podobrazhin, S.N., Stul’skaya, T.V., and Zarubina, E.S., Improvement of Safety in Coal Mining Industry, Bezop. Truda Prom., 2023, no. 3, pp. 40–47.
2. Kazanin, O.I., Underground Mine Planning and Design for Multiple Gently Dipping Gas-Bearing Coal Seams, Zap. Gorn. Inst., 2015, no. 201, pp. 38–45.
3. Remezov, A.V. and Klimov, V.V., Influence of Longwall Face-Induced Abutment Pressure and Higher Rock Pressure Zones on Underground Mine Workings, Vestn. KGTU, 2011, no. 4, pp. 40–43.
4. Isachenko, A.A., Petrova, T.V., and Fryanov, V.N., Patterns of Dynamic Events in Multiple Coal Seam Mining, Izv. TGU. Nauki o Zemle, 2021, no. 2, pp. 311–323.
5. Kazanin, O.I., Sidorenko, A.A., Ermakov, A.Yu., and Vanyakin, O.V., Research of the Stress Shadow Zones Influence onto Longwall Productivity Indicators during Multi-Seam Mining, Mining Informational and Analytical Bulletin—GIAB, 2015, no. 4, pp. 21–25.
6. Gladkikh, A.A., Konovalov, L.M., and Remezov, A.V., Manifestations of Rock Pressure in Mine Workings Overmined by Upper-Lying Longwall, Vestn. KGTU, 2008, no. 1, pp. 20–25.
7. Seryakov, V.M., Stress–Strain Analysis of Rocks Mass in Close-Spaced Coal Seam Mining with Smooth Roof-Lowering, Interexpo Geo-Sibir, 2022, issue 2, no. 3, pp. 318–324.
8. Seryakov, V.M., Validation of Geomechanical Parameters for Multiple Seam Mining, Naukoemk. Tekhnol. Razrab. Ispol’z. Mineral. Resursov, 2017, no. 3, pp. 51–57.
9. Syd S. Peng, Coal Mine Ground Control, West Virginia University, 2008.
10. Tati, B.B., Multi-Seam Coal Mining, J. Southern Afr. Inst. Min. Metall., 2011, vol. 111, pp. 231–242.
11. Ukazaniya po rastional’nomu raspolozheniyu, okhrane i podderzhaniyu gornykh vyrabotok na shakhtakh SSSR, (Guides on Rational Location, Protection and Support of Mine Workings in Coal Mines in the USSR), 1986.
12. Ukazaniyz po uprvalenyu gornym davleniem v ochitnykh vyrabotok pod (nad) tselikami i kreavymi chastyami pri razrabotke svity ugol’nykh plastov moshchnost’yu do 3.5 m i uglom padeniya do 35° (Guides on Rock Pressure Control in Roadways under (above) Pillars and Edge Areas in Mining Multiple Seams to 3.5 m Thick and Dip Angle of 35°), Leningrad: VNIMI, 1984.
13. Zubkov, V.V. and Zubkova, A.I., Modeling Geomechanical Processes and Their Geophysical Control in Multiple Seam Mining, Zap. Gorn. Inst., 2010, issue 188, pp. 82–86.
14. Borzykh, D.M., Rib, S.V., and Fryanov, V.N., Electronic Source Registration Certificate no. 20629, Joint Electronic Resources Library, 2014.
15. Rib, S.V. and Basov, V.V., Numerical Analysis Procedure for Stresses and Strains in Nonuniform Coal Pillars Using Advanced Computer Technologies, Vestn. SGIU, 2015, no. 4, pp. 22–26.
16. Shtumpf, G.G., Ryzhkov, Yu.A., and Shalamanov, V.A., Fiziko-tekhnicheskie svoistva gornykh porod i uglei Kuznetskogo basseina (Physicotechnical Properties of Rocks and Coal in the Kuznetsk Basin), Moscow: Nedra, 1994.
17. Il’nitskaya, E.I., Teder, R.I., Vatolin, E.S., and Kuntysh, M.F., Svoistva gornykh porod i metody ikh opredeleniya (Properties of Rocks and Determination Methods), Moscow: Nedra, 1969.
18. Seryakov, V.M., Rib, S.V., Basov, V.V., and Fryanov, V.N., Geomechanical Substantiation of Technology Parameters for Coal Mining in Interaction Zone of Longwall Face and Gate Roadway, Journal of Mining Science, 2018, vol. 54, no. 6, pp. 899–906.
19. Kutepov, Yu.Yu. and Borger, E.B., Numerical Modeling of the Rock Mass Subsidence Applied to Geological Conditions of the Mine Named after Ruban in Kuzbass, Mining Informational and Analytical Bulletin, 2017, no. 5, pp. 66–75.
20. Pravila okhrany sooruzhenii i prirodnykh ob’ektov ot vrednogo vliyaniya podzemnykh gornykh vyrabotok na ugol’nykh mestorozhdeniyakh (Regulations for Protection of Construction and Facilities from Detrimental Effect of Underground Mine Workings in Coal Fields), Saint-Petersburg, 1998.


SUBSIDENCE ANALYSIS FOR OLD ABANDONED BOARD AND PILLAR COAL MINES USING ANSYS AND MONTE CARLO SIMULATION
Akhil Avchar, Samir Kumar Pal**, Anup Kumar Tripathi*, and Gyandeep Kumar***

Department of Mining Engineering, National Institute of Technology,
Karnataka, India
*e-mail: anuptripathi@nitk.edu.in
Department of Mining Engineering, Indian Institute of Technology Kharagpur,
West Bengal State, India
**e-mail: pal.samir09@gmail.com
***e-mail: gyandeep.iitkgpgmail.com

Mine Subsidence is a phenomenon of lateral or vertical ground movement caused by a failure initiated at the mine level of man-made underground mines and an abandoned mine is a site where mining activities occurred but acceptable mine closure and reclamation did not take place or was incomplete. Subsidence is one of the major problems which is faced over an old abandoned mine. Presently there are limited means or methods which can predict subsidence over an old abandoned coal mine at a shallow depth efficiently and the precautionary methods that should be taken in these situations. This research paper will cover the possible causes which can lead to subsidence above an old abandoned board and pillar coal mines at a shallow depth. The research includes the calculation of the factor of safety for pillars and analysis of FoS using ANSYS and Monte Carlo Simulations for ascertaining subsidence. An old abandoned coal mine of South Eastern Coalfields Ltd. (SECL, a subsidiary of Coal India Limited), was considered for the study of coal pillar fatigue and eventual crushing of pillars over a long duration of time, simulation analysis of stress and strength of coal pillars over a long period, change in behavior of factor of safety as the dimension of the pillars changes.

Subsidence, board and pillar coal mines, factor of safety, Monte Carlo simulation, ANSYS analysis, pillar strength

DOI: 10.1134/S1062739123060078

REFERENCES
1. Singh, K.B. and Dhar, B.B., Sinkhole Subsidence due to Mining, Geotech. Geol. Eng., 1997, vol. 15, no. 4, pp. 327–341.
2. Bahuguna, P.P., Srivastava, A.M.C., and Saxena, N.C., A Critical Review of Mine Subsidence Prediction Methods, Min. Sci. Technol., 1991, vol. 13, no. 3, pp. 369–382.
3. Donnelly, L.J., A Review of International Cases of Fault Reactivation During Mining Subsidence and Fluid Abstraction, Q. J. Eng. Geol. Hydrogeol., 2009, vol. 42, no. 1, pp. 73–94.
4. Peng, S.S., Topical Areas of Research Needs in Ground Control–A State of the Art Review on Coal Mine Ground Control, Int. J. Min. Sci. Technol., 2015, vol. 25, no. 1, pp. 1–6.
5. Jinhai, Z., Ning, J., Liming, Y., and Liyang, B., The Effects of Mining Subsidence and Drainage Improvements on a Waterlogged Area, Bull. Eng. Geol. Environ., 2019, vol. 78, no. 5, pp. 3815–3831.
6. Kumar, S., Kumar, D., Donta, P.K., and Amgoth, T., Land Subsidence Prediction Using Recurrent Neural Networks, Stoch. Environ. Res. Risk Assess., 2022, vol. 36, no. 2, pp. 373–388.
7. Yu, Y., Chen, S.-E., Deng, K.-Z., Wang, P., et al., Fan Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review, Sustainability, 2018, vol. 10, no. 2, p. 113.
8. Oh, H.-J. and Lee, S., Integration of Ground Subsidence Hazard Maps of Abandoned Coal Mines in Samcheok, Korea, Int. J. Coal Geol., 2011, vol. 86, no. 1, pp. 58–72.
9. Nazarov, L.A., Nazarova, L.A., Khan, G.N., and Vandamme, M., Estimation of depth and dimension of underground void in soil by subsidence trough configuration based on inverse problem solution, Journal of Mining Science, 2014, vol. 50, no. 3, pp. 411–416.
10. Lokhande, R.D., Murthy, V.M.S.R., and Singh, K.B., Pot-Hole Subsidence in Underground Coal Mining: Some Indian Experiences, Geotech. Geol. Eng., 2013, vol. 31, no. 2, pp. 793–799.
11. Tian, X., Jin, X., and He, X., Prediction of Coal Mining Subsidence Based on Machine Learning Probability Theory, J. Electr. Comput. Eng., 2022, vol. 2022, pp. 1–10.
12. Marino, G.G., Zamiran, S., and Almiron, F., An Overview of Chimney Subsidence Above Coal Mines, Geotech. Geol. Eng., 2022.
13. Sui, W., Zhang, D., Cui, Z.C., Wu, Z., and Zhao, Q., Environmental Implications of Mitigating Overburden Failure and Subsidences Using Paste-Like Backfill Mining: A Case Study, Int. J. Mining, Reclam. Environ., 2015, vol. 29, no. 6, pp. 521–543.
14. Lechner, A.M., Baumgartl, T., Matthew, P., and Glenn, V., The Impact of Underground Longwall Mining on Prime Agricultural Land: A Review and Research Agenda, L. Degrad. Dev., 2016, vol. 27, no. 6, pp. 1650–1663.
15. Zhang, C., Zhao, Y., Han, P., and Bai, Q., Coal Pillar Failure Analysis and Instability Evaluation Methods: A Short Review and Prospect, Eng. Fail. Anal., 2022, vol. 138, p. 106344.
16. Chen, S., Yin, D., Cao, F., Liu, Y., and Ren, K., An Overview of Integrated Surface Subsidence-Reducing Technology in Mining Areas of China, Nat. Hazards, 2016, vol. 81, no. 2, pp. 1129–1145.
17. Donnelly, L.J., A Review of Coal Mining Induced Fault Reactivation in Great Britain, Q. J. Eng. Geol. Hydrogeol., 2003, vol. 39, no. 1, pp. 5–50.
18. Edmonds, C., Five Decades of Settlement and Subsidence, Q. J. Eng. Geol. Hydrogeol., 2018, vol. 51, no. 4, pp. 403–416.
19. Galav, A., Singh, G.S.P., and Sharma, S.K., Design and Performance of Protective Water Barrier Pillars for Underground Coal Mines in India—A Review, J. Inst. Eng. Ser. D, 2021, vol. 102, no. 2, pp. 539–547.
20. Lokhande, D.R., Murthy, V.M.S.R., Vellanky, V., and Singh, B.K., Assessment of Pot-Hole Subsidence Risk for Indian Coal Mines, Int. J. Min. Sci. Technol., 2015, vol. 25, no. 2, pp. 185–192.
21. Baryakh, A.A., Devyatkov, S.Y., and Samodelkina, N.A., Theoretical Explanation of Conditions for Sinkholes after Emergency Flooding of Potash Mines, Journal of Mining Science, 2016, vol. 52, no. 1, pp. 36–45.
22. Hummel, M., Hummelova, I., Koudelkova, J., and Cerna, K., Mining of Protection Pillars without Subsidence, Journal of Mining Science, 2015, vol. 51, no. 2, pp. 335–341.
23. Sahu, P., Lokhande, R.D., Pradhan, M., and Jade, R., The Influence of Geotechnical Parameters on Sinkhole Subsidence and Its Model Development for Underground Coal Mines in Central India, Journal of Mining Science, 2021, vol. 57, no. 2, pp. 220–228.
24. Sedlak, V., Mathematical Testing the Edges of Subsidence in Undermined Areas, Journal of Mining Science, 2014, vol. 50, no. 3, pp. 465–474.
25. Galvin, J.M., Pillar Systems, Ground Engineering—Principles and Practices for Underground Coal Mining, Cham: Springer International Publishing, 2016, pp. 121–179.
26. Wang, Z. and Li, L., Study of Energy Release in Failure of Coal and Rock Near Fault on ANSYS, Geotech. Geol. Eng., 2019, vol. 37, no. 4, pp. 2577–2589.
27. Wang, L. and Miao, X., Numerical Simulation of Coal Floor Fault Activation Influenced by Mining, J. China Univ. Min. Technol., 2003, vol. 16, no. 4, pp. 385–388.
28. Yu, J., Wilson, J., Forget, B., Dave, A.J., Sun, K., and Phillips, B., Experimental Validation of a High Fidelity Monte Carlo Neutron Transport Model of the MIT Graphite Exponential Pile, Prog. Nucl. Energy, 2022, vol. 152, 104368.
29. Dedes, G., et al., The Role of Monte Carlo Simulation in Understanding the Performance of Proton Computed Tomography, Z. Med. Phys., 2022, vol. 32, no. 1, pp. 23–38.
30. Guimaraes, V. de A., Leal Junior, I.C., and da Silva, M.A.V., Evaluating the Sustainability of Urban Passenger Transportation by Monte Carlo Simulation, Renew. Sustain. Energy Rev., 2018, vol. 93, pp. 732–752.
31. Sarigul, N., Evaluation of the Effect of Field Sizes on Radiation Dose in the Presence of Metal Materials Using Monte Carlo Simulation, Appl. Radiat. Isot., 2022, vol. 182, 110143.
32. Tousi, E.T., Monte Carlo Simulation of the Mass Attenuation Coefficient and Effective Atomic Number of the Eremurus-Rhizophora ssp. Particleboard Phantom at the Mammography Energy Range, Prog. Nucl. Energy, 2022, vol. 149, 104281.
33. Chen, G., Huang, N., Wu, G., Luo, L., Wang, D., and Cheng, Q., Mineral Prospectivity Mapping Based on Wavelet Neural Network and Monte Carlo Simulations in the Nanling W-Sn Metallogenic Province, Ore Geol. Rev., 2022, vol. 143, 104765.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


ROCK FRACTURE


PERMEABILITY OF COAL CORES WITH A DRAINAGE FRACTURE WITH A MONOLAYER OF PROPPANT
T. V. Shilova*, S. V. Serdyukov, and L. A. Rybalkin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: shilovatanya@yandex.ru

The article describes the studies on permeability of coal cores with a through drainage fracture with and without a monolayer of a proppant. The experimental procedure is descried. The parameters of the jointed structure of test long-flame coal are given. The efficiency of wedging drainage fractures by a sparse proppant monolayer in building up permeability of deep-seated coal is demonstrated.

Coal, core, cleavage, jointed structure, permeation test, permeability, rock pressure, drainage fracture, fracture compressibility, proppant, sparse monolayer

DOI: 10.1134/S106273912306008X

REFERENCES
1. Lin, B., Song, H., Zhao, Y., Liu, T., Kong, J., and Huang, Z., Significance of Gas Flow in Anisotropic Coal Seams to Underground Gas Drainage, J. Pet. Sci. Eng., 2019, vol. 180, pp. 808–819.
2. Pan, Z. and Connell, L.D., Modeling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data, Int. J. Coal Geology, 2012, vol. 92, pp. 1–44.
3. Guo, P., Cheng, Y., Jin, K., Li, W., Tu, Q., and Liu, H., Impact of Effective Stress and Matrix Deformation on the Coal Fracture Permeability, Transport in Porous Media, 2014, vol. 103, no. 1, pp. 99–115.
4. Alekseev, A.D., Vasilenko, T.A., Gumennik, K.V., Kalugina, N.A., and Feldman, E.P., Diffusion–Filtration Model of Methane Release from Coal Seam, J. Technical Physics, 2007, vol. 77, no. 4, pp. 65–74.
5. Serdyukov, S.V., Kurlenya, M.V., Rybalkin, L.A., and Shilova, T.V., Hydraulic Fracturing Effect on Filtration Resistance in Gas Drainage Hole Area in Coal, Journal of Mining Science, 2019, vol. 55, no. 2, pp. 175–184.
6. Trofimova, G.I. and Cheremisina, V.G., Commercial Methane Production from Coal Seams as an Up-to-Date and Wise Objective, Simvol nauki, 2015, no. 9-2, pp. 23–36.
7. Tan, Y., Pan, Z., Liu, J., Zhou, F., Connell, L. D., Sun, W., and Haque, A., Experimental Study of Impact of Anisotropy and Heterogeneity on Gas Flow in Coal. Part II: Permeability, Fuel, 2018, vol. 230, pp. 397–409.
8. Pan, Z. and Connell, L.D., Modeling of Anisotropic Coal Swelling and Its Impact on Permeability Behavior for Primary and Enhanced Coalbed Methane Recovery, Int. J. Coal Geology, 2011, vol. 85, no. 3–4, pp. 257–267.
9. Wang, J.G., Liu, J., and Kabir, A., Combined Effects of Directional Compaction. Non-Darcy Flow and Anisotropic Swelling on Coal Seam Gas Extraction, Int. J. Coal Geology, 2013, vol. 109, pp. 1–14.
10. Wang, D., Lv, R., Wei, J., Zhang, P., Yu, C., and Yao, B., An Experimental Study of the Anisotropic Permeability Rule of Coal Containing Gas, J. Natural Gas Sci. Eng., 2018, vol. 53, pp. 67–73.
11. Kumar, H., Elsworth, D., Mathews, J.P., and Marone, C., Permeability Evolution in Sorbing Media: Analogies Between Organic-Rich Shale and Coal, Geofluids, 2016, vol. 16, no. 1, pp. 43–55.
12. Zhi, S. and Elsworth, D., Proppant Embedment in Coal and Shale: Impacts of Stress Hardening and Sorption, Int. J. Coal Geology, 2020, vol. 227, 103545.
13. Li, H., Huang, B., Cheng, Q., Zhao, X., Chen, B., and Zhao, L., Mechanism of Single Proppant Pressure Embedded in Coal Seam Fracture, Energy and Fuels, 2021, vol. 35, no. 9, pp. 7756–7767.
14. Ramandi, H.L., Pizada, M.A., Saydam, S., Arns, C., and Roshan, H., Digital and Experimental Rock Analysis of Proppant Injection into Naturally Fractured Coal, Fuel, 2021, vol. 286, 119368.
15. Pakov, S., Proppanty novogo pokoleniya dlya GRP (New Generation Proppants for Hydraulic Fracturing). Available at: https://neftegaz.ru/science/drilling/331742-propanty-novogo-pokoleniya-dlya-grp.
16. Kumar, H., Elsworth, D., Liu, J., Pone, D., and Mathews, J.P., Permeability Evolution of Propped Artificial Fractures in Coal on Injection of CO2, J. Pet. Sci. Eng., 2015, vol. 133, pp. 695–704.
17. Wu, Y., et al. Experimental Study of Permeability Behavior for Proppant Supported Coal Fracture, J. Natural Gas Sci. Eng., 2018, vol. 51, pp. 18–26.
18. Ahamed, M.A.A., Perera, M.S.A., Dong-yin, L., Ranjith, P.G., and Matthai, S.K., Proppant Damage Mechanisms in Coal Seam Reservoirs During the Hydraulic Fracturing Process: A Review, Fuel, 2019, vol. 253, pp. 615–629.
19. Ahamed, M.A.A., Perera, M.S.A., Black, J.R., Matthai, S.K., Ranjith, P.G., Dong-yin, L., and Sampath, K.H.S., M. Investigating the Proppant Damage Mechanisms Expected in a Propped Coal Fracture and Its Effect on Fracture Flow, J. Pet. Sci. Eng., 2021, vol. 198, 108170.
20. Tan, Y., Pan, Z., Liu, J., Wu, Y., Haque, A., and Connell, L.D., Experimental Study of Permeability and Its Anisotropy for Shale Fracture Supported with Proppant, J. Natural Gas Sci. Eng., 2017, vol. 44, pp. 250–264.
21. Tan, Y., Pan, Z., Feng, X.T., Zhang, D., Connell, L.D., and Li, S., Laboratory Characterization of Fracture Compressibility for Coal and Shale Gas Reservoir Rocks: A Review, Int. J. Coal Geology, 2019, vol. 204, pp. 1–17.
22. He, J., Ling, K., Pei, P., and Ni, X., Calculation of Rock Compressibility by Using the Characteristics of Downstream Pressure Change in Permeability Experiment, J. Pet. Sci. Eng., 2016, vol. 143, pp. 121–127.
23. Yuan, J., Jiang, R., and Zhang, W., The Workflow to Analyze Hydraulic Fracture Effect on Hydraulic Fractured Horizontal Well Production in Composite Formation System, Advances in Geo-Energy Research, 2018, vol. 2, no. 3, pp. 319–342.
24. Pan, Z., Connell, L.D., and Camilleri, M., Laboratory Characterization of Coal Reservoir Permeability for Primary and Enhanced Coalbed Methane Recovery, Int. J. Coal Geology, 2010, vol. 82, no. 3–4, pp. 252–261.
25. Guo, P., Cheng, Y., Jin, K., Li, W., Tu, Q., and Liu, H., Impact of Effective Stress and Matrix Deformation on the Coal Fracture Permeability, Transport in Porous Media, 2014, vol. 103, no. 1, pp. 99–115.
26. Shilova, T. and Serdyukov, S., Permeability of Coking Coals and Patterns of Its Change in Leninsky Area, Kuznetsk Coal Basin, Russia, Appl. Sci., 2021, vol. 11, no. 9, 3969.
27. Serdyukov, S.V., Shilova, T.V., and Drobchik, A.N., Laboratory Installation and Procedure to Determine Gas Permeability of Rocks, Journal of Mining Science, 2017, vol. 53, no. 5, pp. 954–961.
28. State Standard GOST 26450.2-85, Moscow: Izd. Standartov, 1985.
29. Shilova, T.V., Rybalkin, L.A., and Yablokov, A.V., Prediction of In-Situ Cleaved Coal Permeability, Journal of Mining Science, 2020, vol. 56. No. 2, pp. 226–235.
30. Ismagilov, Z.R., Shikina, N.V., Zhuravleva, N.V., Potokina, R.R., Rudina, N.A., Ushakov, V.A., and Teryaeva, T.N., Analysis of Alumosilicate Microspheres Made of Fly Ash at Power Generation Stations Running on Kuzbass Coal, Khim. Tverd. Tela, 2015, no. 4, pp. 49–57.


MINING THERMOPHYSICS


OXIDIZABILITY AND SPONTANEOUS COMBUSTION OF NATIVE AND WATER-BEARING ORE AND ROCKS
A. A. Eremenko*, T. P. Darbinyan**, Yu. N. Shaposhnik, V. A. Portola***, and P. A. Tsoi

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: eremenko@ngs.ru
Norilsk Nickel, Norilsk, 663302 Russia
**e-mail: DarbinyanTP@nornik.ru
Gorbachev Kuzbass State Technical University,
Kemerovo, 650000 Russia
***e-mail: portola2@yandex.ru

The article describes determination of oxidizability and spontaneous combustion of ore and rocks as a case-study of the Oktyabrsky deposit. The rate of oxidation of sulfide ore increases after watering. The authors present the studies on sensitivity of ore and enclosing rocks to spontaneous combustion, as well as on gas emission in isothermal conditions and in heating. It is found that sulfide ore, hornfels and gabbro-dolerite are sensitive to spontaneous combustion.

Mineral deposit, ore, rocks, flooding, spontaneous combustion, oxidizability, absorption

DOI: 10.1134/S1062739123060091

REFERENCES
1. Skochinsky, A.A. and Ogievsky, V.M., Rudnichnye pozhary (Mine Fires), Moscow: Gornoe delo, Kimeriysky Tsentr, 2011.
2. Veselovsky, V.S., Alekseeva, N.D., Vinogradova, L.N., Orleanskaya, G.L., and Terpogosova, E.A., Samovozgoranie promyshlennykh materialov (Spontaneous Combustion of Industrial Materials), Moscow: Nauka, 1964.
3. Veselovsky, V.S., Vinogradova, L.N., Orleanskaya, G.L., Terpogosova, E.A., and Odinokova, L.V., Prognoz i profilaktika endogennykh pozharov (Prediction and Prevention of Endogenous Fires), Moscow: Nauka, 1975.
4. Veselovsky, V.S., Vinogradova, L.N., Orleanskaya, G.L., and Terpogosova, E.A., Fizicheskie osnovy samovozgoraniya uglya i rud (Physical Frameworks of Spontaneous Combustion of coal and Ore), Moscow: Nauka, 1972.
5. Gluzberg, E.I., Teoreticheskie osnovy prognoza i profilaktiki shakhtnykh endogennykh pozharov (Theoretical Framework for Prediction and Prevention of Endogenous Fires in Mines), Moscow: Nedra, 1986.
6. Portola, V.A., Assessment of the Effect of Some Factors on Spontaneous Coal Combustion, Journal of Mining Science, 1996, vol. 32, no. 3, pp. 212–218.
7. Igishev, V.G., Bor’ba s samovozgoraniem uglya v shakhtakh (Combating Spontaneous Coal Combustion in Mines), Moscow: nedra, 1987.
8. Portola, V.A. and Khramysov, V.I., Impact of Mine Mixture on Spontaneous Combustion Liability of Coal, Bezop. Truda Prom., 2017, no. 2, pp. 56–59.
9. Skritsky, V.A., Mechanism of Spontaneous Combustion Sources in Coal and Validation of Endogenous Firing Prevention Methods in Mines, Synopsys of Dr. Tech. Sci. Dissertation, Novosibirsk, 2011.
10. Kumykov, V.Kh. and Kumykova, T.M., Fire-Hazardous Ore Mining and Stockpiling Technology, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 598–603.
11. Instruktsiya po preduprezhdeniyu i tusheniyu podzemnykh endogennykh pozharov na gornorudnykh predpriyatiyakh ministerstva tsvetnoi promyshlennosti SSSR (Endogenous Fire Prevention and Extinction Guide for Underground Mines of the USSR Ministry of Nonferrous Industry), 1981.
12. Tekhnicheskii proekt razrabotki Oktyabrskogo mestorozhdeniya. Rudnik “Taimyrskii”. Uchastok bogatykh rud. Izmenenie no. 1 (Detailed Design: Development of the Oktyabrsky Deposit. Taimyrsky Mine. High-Grade Ore Site. Amendment no. 1), Krasnoyarsk: IGDGiGSFU, 2019.
13. Manakov, V.Ya., Classification of Pyrite and Complex Ore by Their Liability to Spontaneous Combustion, Sverdlovsk: Unipromed’ institut, 1978.
14. Eremenko, A.A., Darbinyan, T.P., Shaposhnik, Yu.N., Usol’tseva, O.M., and Tsoi, P.A., Physical and Mechanical Properties of Ore and Rocks after Flooding, Journal of Mining Science, 2023, vol. 59, no. 5, pp. 723–728.
15. Instruktsiya po opredeleniyu inkubatsionnogo perioda samovozgoraniya uglya (Spontaneous Coal Combustion Incubation Period: Determination Guide), Moscow, 2013, issue 38.


MINERAL DRESSING


SECONDARY PRODUCTS OBTAINED FROM SAPONITE-BEARING PROCESS WATER: THEORETICAL AND EXPERIMENTAL JUSTIFICATION
V. A. Chanturia and V. G. Minenko*

Academician Melnikov Research Institute for Comprehensive Exploitation of Mineral Resources—IPKON, Russian Academy of Sciences, Moscow, 111020 Russia
*e-mail:vladi200@mail.ru

The authors provide the theoretical and experimental justification for the effective methods of modification of saponite—pillaring and thermal treatment—which ensure production of sorbents possessing high cation exchange capacity relative to cations of heavy metals. The mechanism of pillaring and thermal modification of a saponite-containing product at the temperature of 625 °С involves expansion of layers of the mineral, formation of additional acid or redox sites (pillaring) and restructuring with generation of metastable phases (thermal treatment). Modification of saponite increases static exchange capacity relative to copper cations by 2 times after pillaring and by 2.6 times after thermal treatment.

Process water, purification, modified saponite, sorbent, static exchange capacity, heavy metals

DOI: 10.1134/S1062739123060108

REFERENCES
1. Osipov, V.I. and Sokolov, V.N., Gliny i ikh svoistva. Sostav, stroeniye i formirovanie svoystv (Clays and Their Properties. Composition, Structure and Formation of Properties), Moscow: Geos, 2013.
2. Zhou, C.H., Zhou, Q., Wu, Q.Q., Petit, S., Jiang, X.C., Xia, S.T., Li, C.S., and Yu, W.H., Modification, Hybridization and Applications of Saponite: An Overview, Appl. Clay Sci., 2019, vol. 168, pp. 136–154.
3. Chanturiya, V., Minenko, V., Suvorova, O., Pletneva, V., and Makarov, D., Electrochemical Modification of Saponite for Manufacture of Ceramic Building Materials, Appl. Clay Sci., 2017, vol. 135, pp. 199–205.
4. Makarov, V.N., Makarov, D.V., Vasil’eva, Т.N., and Kremenetskaya, I.P., Interaction of Natural Serpentines with Dilute Sulfate Solutions Containing Nickel Ions, Zhurn. Neorg. Khimii, 2005, vol. 50 (9), pp. 1418–1429.
5. Minenko, V.G., Samusev, А.L., Selivanova, Е.А., Bayurova, Yu.L., Silikova, А.R., and Makarov, D.V., Study of Copper Ion Sorption by Electrochemically Modified Saponite, Mineralogiya Tekhnogeneza, 2017, no. 18, pp. 190–199.
6. Chanturiya, V., Masloboev, V., Makarov, D., Nesterov, D., Bayurova, J., Svetlov, A., and Men’shikov, Y., Geochemical Barriers for Environmental Protection and Recovery of Nonferrous Metals, J. Env. Sci. Health, Part A, 2014, vol. 49, no. 12, pp. 1409–1415.
7. Carniato, F., Bisio, C., Psaro, R., Marchese, L., and Guidotti, M., Niobium (V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents, Angew. Chem. Int. Ed., 2014, vol. 53, no. 38, pp. 10095–10098.
8. Marcal, L., de Faria, E.H., Nassar, E.J., Trujillano, R., Martin, N., Vicente, M.A., Rives, V., Gil, A., Korili, S.A., and Ciuffi, K.J., Organically Modified Saponites: SAXS Study of Swelling and Application in Caffeine Removal, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 20, pp. 10853–10862.
9. Morozova, M.V., Frolova, M.A., and Makhova, T.A., Sorption-Desorption Properties of Saponite-Containing Material, J. Physics: Conf. Series, 2017, vol. 929. 012111.
10. Sato, K., Fujimoto, K., Dai, W., and Hunger, M., Quantitative Elucidation of Cs Adsorption Sites in Clays: Toward Sophisticated Decontamination of Radioactive Cs, J. Phys. Chem. C, 2016, vol. 120, no. 2, pp. 1270–1274.
11. Tsukamoto, T., Shimada, T., and Takagi, S., Photophysical Properties and Adsorption Behaviors of Novel Tri-Cationic Boron (III) Subporphyrin on Anionic Clay Surface, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 11, pp. 7522–7528.
12. Wang, W., Zhen, W., Bian, S., and Xi, X., Structure and Properties of Quaternary Fulvic Acid–Intercalated Saponite/Poly (Lactic Acid) Nanocomposites, Appl. Clay Sci., 2015, vol. 109, pp. 136–142.
13. Ugochukwu, U.C. and Fialips, C.I., Crude Oil Polycyclic Aromatic Hydrocarbons Removal via Clay-Microbe-Oil Interactions: Effect of Acid Activated Clay Minerals, Chemosphere, 2017, vol. 178, pp. 65–72.
14. De Stefanis, A., Cafarelli, P., Gallese, F., Borsella, E., Nana, A., and Perez, G., Catalytic Pyrolysis of Polyethylene: A Comparison between Pillared and Restructured Clays, J. Anal. Appl. Pyrolysis, 2013, vol. 104, pp. 479–484.
15. Gebretsadik, F.B., Ruiz-Martinez, J., Salagre, P., and Cesteros, Y., Glycidol Hydrogenolysis on a Cheap Mesoporous Acid Saponite Supported Ni Catalyst as Alternative Approach to 1, 3-Propanediol Synthesis, Appl. Catal. A Gen., 2017, vol. 538, pp. 91–98.
16. Gebretsadik, F.B., Cesteros, Y., Salagre, P., Gimenez-Manogil, J., Garcia-Garcia, A., and Bueno-Lopez, A., Potential of Cu–Saponite Catalysts for Soot Combustion, Catal. Sci. Technol., 2016, vol. 6, no. 2, pp. 507–514.
17. Komadel, P., Structure and Chemical Characteristics of Modified Clays, Natural Microporous Materials in Environmental Technology, Kluwer, Alphen an den Rijn, 1999.
18. Krupskaya, V.V., Zakusin, S.V., Tyupina, E.A., Dorzhieva, O.V., Zhukhlistov, A.P., Belousov, P.E., and Timofeeva, M.N., Experimental Study of Montmorillonite Structure and Transformation of its Properties under Treatment with Inorganic Acid Solutions, Minerals, 2017, vol. 7. 049.
19. Kumar, P., Jasra, R.V., and Bhat, T.S.G., Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation, Ind. Eng. Chem. Res., 1995, vol. 34, pp. 1440–1448.
20. Tkac, I., Komadel, P., and Muller, D., Acid-Treated Montmorillonites—A Study by 29Si and 27Al MAS NMR, Clay Minerals, 1994, vol. 29, pp. 11–19.
21. Vicente, M.A., Suarez-Barrios, M., Lopez-Gonzalez, J.D., and Banares-Munoz, M.A., Characterization, Surface Area, and Porosity Analyses of the Solids Obtained by Acid Leaching of a Saponite, Langmuir, 1996, vol. 12, pp. 566–572.
22. Vicente, I., Salagre, P., and Cesteros, Y., Ni Nanoparticles Supported on Microwave-Synthesised Saponite for the Hydrogenation of Styrene Oxide, Appl. Clay Sci., 2011, vol. 53, no. 2, pp. 212–219.
23. Intachai, S., Khaorapapong, N., and Ogawa, M., Hydrothermal Synthesis of Zinc Selenide in Smectites, Appl. Clay Sci., 2017, vol. 135, pp. 45–51.
24. Franco, F., Benitez-Guerrero, M., Gonzalez-Trivino, I., Perez-Recuerda, R., Assiego, C., Cifuentes-Melchor, J., and Pascual-Cosp, J., Low-Cost Aluminum and Iron Oxides Supported on Dioctahedral and Trioctahedral Smectites: A Comparative Study of the Effectiveness on the Heavy Metal Adsorption from Water, Appl. Clay Sci., 2016, vol. 119, pp. 321–332.
25. Miyagawa, M., Shibusawa, A., Maeda, K., Tashiro, A., Sugai, T., and Tanaka, H., Diameter-Controlled Cu Nanoparticles on Saponite and Preparation of Film by Using Spontaneous Phase Separation, RSC Adv., 2017, vol. 7, no. 66, pp. 41896–41902.
26. De Paiva, L.B., Morales, A.R., and Valenzuela, F.R., Diaz Organoclays: Properties, Preparation and Applications, Appl. Clay Sci., 2008, vol. 42, pp. 8–24.
27. Zou, H., Wu, S., and Shen, J., Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev., 2008, vol. 108, no. 9, pp. 3893–3957.
28. Chanturiya, V.A., Minenko, V.G., Makarov, D.V., Suvorova, O.V., and Selivanova, E.A., Advanced Techniques of Saponite Recovery from Diamond Processing Plant Water and Areas of Saponite Application, Minerals, 2018, vol. 8, no. 12. — 549.
29. Minenko, V.G., Adsorption Properties of Modified Saponite in Removal of Heavy Metals from Process Water, Journal of Mining Science, 2021, vol. 57, no. 2, pp. 298–306.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


STIMULATION OF FLOTATION SELECTIVITY USING PHYSISORPTION MECHANISM OF COLLECTORS
S. A. Kondrat’ev*, I. A. Konovalov, and T. G. Gavrilova

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091 Russia *e-mail: kondr@misd.ru

The main mechanisms of flotation activation by ions of metals are discussed and critically analyzed. It is shown that ions of metals can be both activators and depressants of flotation. Based on the mechanism of physisorption, it is revealed when metals act as activators and depressants. A method is proposed to stimulate selectivity of extraction of a target mineral in case of undesirable activation of flotation of associate components. The studies can be useful in selection of metal–activator, ratio of concentrations of activator and collector and pH of flotation system.

Flotation, metal ions, extraction, physisorption, surface activity

DOI: 10.1134/S106273912306011X

REFERENCES
1. Nagaraj, D.R. and Farinato, R.S., Evolution of Flotation Chemistry and Chemicals: A Century of Innovations and the Lingering Challenges, Min. Eng., 2016.
2. Babel, B. and Rudolph, M., Investigating Reagent-Mineral Interactions by Colloidal Probe Atomic Force Microscopy, Int. Miner. Proc. Congress, Moscow, 2018, pp. 1384–1391.
3. Li, H., Liu, M., and Liu, Q., The Effect of Non-Polar Oil on Fine Hematite Flocculation and Flotation Using Sodium Oleate or Hydroxamic Acids as a Collector, Min. Eng., 2018, vol. 219, pp. 105–115.
4. Fuerstenau, M.C., Martin, C.C., and Bhappu, R.B., The Role of Hydrolysis in Sulfonate Flotation of Quartz, State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology Campus Station Socorro, New Mexico, Transactions of SME, 1963, vol. 226, pp. 449–454.
5. Jiang, C.L., Wang, X.H., Parekh, B.K., and Leonard, J.W., The Surface and Solution Chemistry of Pyrite Flotation with Xanthate in the Presence of Iron Ions, Colloids Surf., A: Physicochem. Eng. Aspects, 1998, vol. 136, pp. 51–62.
6. Kondrat’ev, S.A. and Konovalov, I.A., Effect of Physisorption of Collecting Agent on Flotation of Pyrite in the Presence of Fe2+ and Fe3+ Ions, Journal of Mining Science, 2022, vol. 58, no. 1, pp. 105–114.
7. Kondrat’ev, S.A. and Konovalov, I.A., Effect of Collector Physisorption on Flotation of Galena with Xanthate and Pb2+, Journal of Mining Science, 2023, vol. 59, no. 4, pp. 628–637.
8. Chen, P., Zhai, J., Sun, W., Hu, Y., and Yin, Z., The Activation Mechanism of Lead Ions in the Flotation of Ilmenite Using Sodium Oleate as a Collector, Min. Eng., 2017, vol. 111, pp. 100–107.
9. Hukki, R.T., Palomaki, A., and Orivouri, E., Electrophoretic Investigation of the Activation of Sphalerite by Copper Sulfate in Flotation, Suomen Kemistilehti, 1952, vol. B 25, p. 42.
10. Salatic, D., Pustic, A., and Djakovic, D., Proceeding IMPC XI, Special Issue, 1975, Cagliari, 1975, Int. Miner. Proc. Congr., Cagliari, Sardinia, 1975.
11. Ejtemaei, M., Irannajad, M., and Gharabaghi, M., Role of Dissolved Mineral Species in Selective Flotation of Smithsonite from Quartz Using Oleate as Collector, Int. J. Min. Proc., 2012, vol. 114–117, pp. 40–47.
12. Clarke, P., Arora, P., Fornasiero, D., Ralston, J., and Smart, R., Separation of Chalcopyrite or Galena from Sphalerite: A Flotation and X-Ray Photoelectron Spectroscopic Study, in: Mehrotra, S.P., Shekhar, Rajiv (Eds.), Mineral Processing: Recent Advances and Future Trends, Allied Publishers Limited, New Delhi, 1995.
13. Liu, C., Zhu, G., Song, S., and Li, H., Flotation Separation of Smithsonite from Quartz Using Calcium Lignosulphonate as a Depressant and Sodium Oleate as a Collector, Min. Eng., 2019, vol. 131, pp. 385–391.
14. Kondrat’ev, S.A., Selecting Collecting Agents for Flotation, Journal of Mining Science, 2022, vol. 58, no. 5, pp. 796–811.
15. Fuerstenau, M.C., Miller, J.D., Pray, R.E., and Perinne, B.F., Metal Ion Activation in Xanthate Flotation of Quartz, AIME Transactions, 1966, vol. 235, pp. 359–365.
16. Liu, B., Wang, X., Du, H., Liu, J., Zheng, S., Zhang, Y., and Miller, J.D., The Surface Features of Lead Activation in Amyl Xanthate Flotation of Quartz, Int. J. Min. Proc., 2016, vol. 151, pp. 33–39.
17. Liu, W., Zhang, S., Wang, W., Zhang, J., Yan, W., Deng, J., Feng, Q., and Huang, Y., The Effects of Ca(II) and Mg(II) Ions on the Flotation of Spodumene Using NaOL, Miner. Eng, 2015, vol. 79, pp. 40–46.
18. Ananthapadmanabhan, K.P. and Somasundaran, P., Surface Precipitation of Inorganics and Surfactants and its Role in Adsorption and Flotation, Colloids Surf., 1985, vol. 13, pp. 151–167.
19. Fuerstenau, M.S., Rice, D.A., Somasundaran, P., and Fuerstenau, D.W., Metal Ion Hydrolysis and Surface Charge in Beryl Flotation, AIME Transactions, 1965, vol. 241, pp. 381–391.
20. Wang, Y.H. and Yu, F.S., Effects of Metallic Ions on the Flotation of Spodumene and Beryl, J. China University Min. and Technol., 2007, vol. 17, no.1, pp. 35–39.
21. Kanicky, J.R. and Shah, D.O., Effect of Degree, Type, and Position of Unsaturation on the PKA of Long-Chain Fatty Acids, J. Colloid and Interface Sci., 2002, vol. 256, pp. 201–207.
22. Gao, Z., Jiang, Z., Sun, W., and Gao, Y., Typical Roles of Metal Ions in Mineral Flotation: A Review, The Nonferrous Metals Society of China, 2021, vol. 31, pp. 2081–2101.
23. Tian, M., Zhang, C., Han, H., Liu, R., Gao, Z., Chen, P., Wang, L., Li, Y., Ji, B., Hu, Y., and Sun, W., Effects of the Preassembly of Benzohydroxamic Acid with Fe (III) Ions on its Adsorption on Cassiterite Surface, Miner. Eng., 2018, vol. 127, pp. 32–41.
24. Tian, M., Hu, Y., Sun, W., and Liu, R., Study on the Mechanism and Application of a Novel Collector-Complexes in Cassiterite Flotation, Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2017, vol. 522, pp. 635–641.
25. Han, H.S., Liu, W.L., Hu, Y.H., Sun, W., and Li, X.D., A Novel Flotation Scheme: Selective Flotation of Tungsten Minerals from Calcium Minerals Using Pb–BHA Complexes in Shizhuyuan, Rare Metals, 2017, vol. 36 (6), pp. 1–8.
26. Han, H., Hu, Y., Sun, W., Li, X., Cao, C., Liu, R., Yue, T., Meng, X., Guo, Y., Wang, J., Gao, Z., Chen, P., Huang, W., Liu, J., Xie, J., and Chen, Y., Fatty Acid Flotation versus BHA Flotation of Tungsten Minerals and Their Performance in Flotation Practice, Int. J. Miner. Proc., 2017, vol. 159, pp. 22–29.
27. Wang, J., Mao, Y., Cheng, Y., Xiao, Y., Zhang, Y., and Bai, J., Effect of Pb(II) on the Flotation Behavior of Scheelite Using Sodium Oleate as Collector, Miner. Eng., 2019, vol. 136, pp. 161–167.
28. Palsson, B. and Forssberg Eric, K.S., Computer-Assisted Calculations of Thermodynamic Equilibria in Sphalerite-Xanthate Systems, Int. J. Miner. Proc., 1989, vol. 26, pp. 223–258.
29. Palsson, B., and Forssberg Eric, K.S., Computer-Assisted Calculations of Thermodynamic Equilibria in the Galena?Ethyl Xanthate System, Int. J. Miner. Proc., 1988, vol. 23, pp. 93–121.
30. Wang, X., Forssberg Eric, K.S., and Bolin, N.J., Thermodynamic Calculations on Iron-Containing Sulphide Mineral Flotation Systems, I. The Stability of Iron-Xanthates, Int. J. Miner. Proc., 1989, vol. 27, pp. 1–19.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


PREPARABILITY OF IRON ORE FROM YAKOVLEVO DEPOSIT, KURSK MAGNETIC ANOMALY, USING COARSE PARTICLE SEPARATION METHODS
D. N. Shibaeva* and A. A. Kompanchenko**

Mining Institute, Kola Science Center, Russian Academy of Sciences,
Apatity, 184209 Russia
*e-mail: shibaeva_goi@mail.ru
Geological Institute, Kola Science Center, Russian Academy of Sciences,
Apatity, 184209 Russia
**e-mail: komp-aleba@yandex.ru

The article presents evaluation of preparability of iron ore from Yakovlevo deposit, Kursk Magnetic Anomaly, using magnetic, gravity and X-ray radiometric methods of coarse particle separation. The detailed study involved a material with particle size of – 100 + 25 mm, containing 25–45% Fetotal and 3–35% of Femagn and requiring dressing. It is found that effective separation of the initial feedstock into ore and dirt is ensured by the X-ray radiometric method of separation of coarse particles – 50 + 25 mm in size. At the analytical parameter equal to 2, the increase in the content of Fetotal in the ore product reaches 1.18 times at the loss of 5.52%.

Iron ore, coarse particle separation, mineralogical and technological properties, magnetic separation, gravity separation, radiometric separation

DOI: 10.1134/S1062739123060121

REFERENCES
1. Orlova, V.P. (ed.), Zhelezorudnaya baza Rossii (Iron Ore Reserves in Russia), Moscow: Geoinformmark, 2007.
2. Pogorel’tsev, I.A., Petina, V.I., Belousova, L.I., Gaivoronskaya, N.I., and Bugaeva, Е.А., Mineral Resource Base of the Belgorod Region as the Foundation for Its Economic Development in the 21st Сentury, Nauch. Vedomosti Belgorodskogo Gos. Universiteta. Estestvennye Nauki, 2016, vol. 35, no. 11, pp. 172–182.
3. Kalashnikov, A.O., Nikulin, I.I., and Stepenshchikov, D.G., Unsupervised Geochemical Classification and Automatic 3D Mapping of the Bolshetroitskoe High-Grade Iron Ore Deposit (Belgorod Region, Russia), Scientific Reports, 2020. DOI: 10.1038/s41598-020-74505-y.
4. Sergeev, S.V., Lyabakh, А.I., and Zaitsev, D.А., Experience of Mining Rich Iron Ore at Yakovlevo Deposit, KMA, Nauch. Vedomosti. Estestvennye Nauki, 2011, no. 3 (98), pp. 200–208.
5. Ainbinder, I.I., Ovcharenko, ОV., and Patskevich, P.G., Justification of Geotechnological Parameters for Iron Ore Mining at Yakovlevo Deposit, GIAB (Scientific and Technical Journal), 2015, no. 12, pp. 9–15.
6. Gzogyan T.N. and Gzogyan S.R., Features of the Material Composition of Rich Iron Ores at KMA Deposits, Nauch. Vedomosti Belgorodskogo Gos. Universiteta. Estestvennye Nauki, 2018, vol. 42, no. 2, pp. 131–141.
7. Gzogyan, T.N., Gzogyan, S.R., Grishkina, E.V., Romanenko, E.F., and Ermolaev, D.V., High-Grade Iron Ores of KMA as a Raw Material for Metallization, COMPUSOFT, An Int. J. Advanced Computer Technol., 2019, vol. 8 (6), pp. 3223–3229.
8. Trushko, V.L. and Trushko, О.V., Comprehensive Development of Iron Ore Deposits Using Competitive Underground Geotechnologies, Zapiski gornogo instituta, 2021, vol. 25, pp. 569–577.
9. Tkhorikov, А.I., Prediction of Stress-Strain State of the Rock Mass when Mining Rich Iron Ore Deposits, Cand. Tech. Sci. Thesis, Saint Petersburg: Saint Petersburg Mining University, 2021.
10. Vu Duc Tuan, Justification of the Rational Level of Losses and Coal Contamination in Open-Pit Mining of Tay Nam da Mai Deposit, Vietnam, Cand. Tech. Sci. Thesis, Saint Petersburg: Saint Petersburg Mining University, 2018.
11. Kretov, S.I., Increasing the Technical and Economic Parameters of Dressing of Hematite-Containing Magnetite Quartz by Using Dry Magnetic Separation before Grinding, Doc. Tech. Sci. Thesis, Moscow: Moscow State Mining University, Mikhailovsky GOK, 2007.
12. Tereshchenko, S.V., Shibaeva, D.N., Alekseeva, S.А., and Kompanchenko, А.А., Study into the Effect of Material Composition and Size of Ferruginous Quartzites from Olenegorsk Deposit on the Results of Dry Magnetic Separation, Obogashch. Rud, 2020, no. 6, pp. 15–20.
13. Shibaeva, D.N., Tereshchenko, S.V., and Kompanchenko, A.A., Analysis of the Effect of Dry Magnetic Separation on the Process of Ferruginous Quartzites Disintegration, Miner., 2021, vol. 11, no. 8.
14. Ezhov, A.M. and Shvaljov, Y.B., Dry Magnetic Separation of Iron Ore of the Bakchar Deposit, Proc. Chem., 2015, vol, pp 160–166.
15. Alexandrov, E.A., The Precambrian Banded Iron Formations of the Soviet Union, Economic Geology, 1973, vol. 68, pp. 1035–1062.
16. Neymayer, P. L., Gois, L., Ferreira, R.F., and Kolacz, J., Evaluation of Ore Sorting Technology for Iron Ore Coarse Particles, Technical Contribution to the 20?, Simposio de Mineracao, 2019.
17. Yur’ev, B.P. and Sheshukov, О.Yu., Development of Environmentally Friendly Technology for Siderite Ore Dressing, Byull. Nauch. Tekh. Econom. Inormatsii “Chernaya Metallurgiya”, 2019, no. 75 (8), pp. 923–929.
18. Tsypin, Е.F., Efremova, Т.А., and Ovchinnikova, Т.Yu., Modeling the Process of X-Ray Fluorescence Separation, GIAB, 2022, no. 11–1, pp. 127–139.
19. Mokrousov, V.A. and Lileev, V.А., Radiometricheskoe obogashchenie neradioaktivnykh rud (Radiometric Separation of Non-Radioactive Ore), Moscow: Nedra, 1979.
20. Denisov, G.А., Leman, Е.P., Tomsky, I.V., and Pikunova, Т.Yu., Geotekhnologicheskaya interpretatsiya rentgenoradiometricheskogo oprobovaniya rud (Geotechnological Interpretation of X-Ray Radiometric Sampling of Ores), Saint Petersburg: Mezhdunarodnaya akademiya nauk, ekologii, bezopasnosti cheloveka i prirody, 2002.
21. Arkhipov, О.А., Radiometricheskaya obogatimost’ rud pri ikh razvedke (Radiometric Dressability of Ores during Exploration), Moscow: Nedra, 1985.
22. Ezhov, A.A., Tereshchenko, S.V., Pavlishina, D.N., and Vlasov, B.A., RF patent no. 2662828 C1, Byull. Izobret., 2018, no. 22.
23. Shibaeva, D.N., Tereshchenko, S.V., Vlasov, B.A., Shumilov, P.А., and Bulatov, V.V., Analysis of Transport and Separation Systems for Radiometric Separators: Searching for Ways to Improve their Operating Efficiency, Mining Informational and Analytical Bulletin—GIAB, 2021, no. 5–2, pp. 338–349.
24. Otsenka obogatimosti rud chernykh i legiruyushchikh metallov metodami krupnokuskovoi separatsii. Metodicheskie rekomendatsii no. 103 (Dressability Evaluation of Ferrous and Alloying Metal Ores Using Coarse Particle Separation Methods. Methodical Recommendations no. 103), Moscow: Fedorovsky’s VIMS, 2014.
25. Zhuravleva, Е.S., Scientific and Experimental Justification of Electrochemical Methods for Improving Technological Parameters when Processing Crude Magnetite Concentrates, Cand. Tech. Sci. Thesis, Moscow: University of Science and Technology MISIS, IPKON RAS, 2017.
26. Izoitko, V.M., Tekhnologicheskaya mineralogiya i otsenka rud (Technological Mineralogy and Ore Evaluation), Saint Petersburg: Nauka, 1997.


PROCESS FLOW CHARTS AND RECOMMENDATIONS FOR PROCESSING OF BAUXITE WITH INCREASED CONTENTS OF IRON AND FINE PARTICLES OF VALUABLE COMPONENTS
V. I. Rostovtsev

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
e-mail: benevikt@misd.ru

The author investigated the modes of thermal and heat-and-radiation treatment of ferruginous bauxite from Vezhayu–Vorykva deposit and revealed different mechanisms of mineral transformations. Under thermal treatment, oxo-hydroxides transform into anhydrous iron and aluminum oxides, while under heat-and-radiation treatment, scattered microelements form metal alloys and new minerals. It is recommended to ground ferruginous bauxite processing on basic science, first of all, nanomineralogy, and on phenomenon of phase heterogenization. This approach can promote an increase in recovery of fine particles of aluminum and other valuable components from low-grade bauxite and red mud by eco-friendly techniques.

Ferruginous bauxite, processing improvement, thermal treatment, accelerated electron treatment, magnetic sensitivity, dry magnetic separation, phase heterogenization, recovery, rare earths, rare metals, fine particles, valuable components

DOI: 10.1134/S1062739123060133

REFERENCES
1. Rasporyazhenie Pravitel’stva Rossiyskoi Federatsii no. 2914-r ot 22.12.2018 (Decree of the Government of the Russian Federation no. 2914-r dated December 22, 2018), Moscow, 2018.
2. Rasporyazhenie Pravitel’stva Rossiyskoi Federatsii no. 50-r ot 16.01.1996 (Decree of the Government of the Russian Federation no. 50-r dated January 16, 1996), Moscow, 1996.
3. Rasporyazhenie Pravitel’stva Rossiyskoi Federatsii no. 2473-r ot 30.08.2022 (Decree of the Government of the Russian Federation no. 2473-r dated August 30, 2022), Moscow, 2022.
4. O sostoyanii i ispol’zovanii mineral’no-syr’yevykh resursov Rossiyskoi Federatsii v 2021 g. Gosudarstvennyi doklad Ministerstva prirodnykh resursov i ekologii RF (On the State and Use of Mineral Resources of the Russian Federation in 2021. State Report of the Ministry of Natural Resources and Ecology of the Russian Federation), Moscow, 2022.
5. Klyuchkarev, D.S., Volkova, N.M., and Komyn. M.F., The Problems Associated with Using Nonconventional Rare-Earth Minerals, J. Geochem. Exploitation, 2013, vol. 133, pp. 133–138.
6. Borra, C.R., Mermans, J., Blanpain, B., Pountikes, Y.B., and Gerven, T., Selective Recovery of Rare Earths from Bauxite Residue by Combination of Sulfation, Roasting and Leaching, J. Miner. Eng., 2016, vol. 92, pp. 151–159.
7. Borra, C.R., Pontikes, Y., Binnemans, K., and Gerven, T., Leaching of Rare Earths from Bauxite Residue (Red Mud), J. Miner. Eng., 2015, vol. 76, pp. 20–27.
8. Klyuchkarev, D.S., On the Problem of Rare Earth Component of Bauxite from the Republic of Komi. Geology and Mineral Resources of the European North-East of Russia, Proc. of the 17th Geol. Congress of the Republic of Komi. Vol. III, Syktyvkar: Geoprint, 2019.
9. Davris, P., Balomenos, E., Panias, D., and Paspaliaris, I., Selective Leaching of Rare Earth Elements from Bauxite Residue, Hydrometallurgy, 2016, vol. 164, pp. 125–135.
10. Kotova, О.B. and Vakhrushev, А.V. Bauxite from Timan: Mineralogical and Processing Features, Vestn. IG Komi NTs UrO RAN, 2011, no. 3, pp. 12–16.
11. Belyaev, V.V., Yatskevich, B.A., and Shvetsova, I.V., Devonskie boksity Timana (Devonian Bauxite of Timan), Syktyvkar: Geoprint, 1997.
12. Likhachev, V.V., Redkometallnost’ boksitonosnoy kory vyvetrivaniya Srednego Timana (Rare Metal Content in Bauxite-Bearing Weathering Crust of Middle Timan), Syktyvkar: Izd. Komi NTs UrO RAN, 1993.
13. Vakhrushev, А.V., The First Discovery of Native Gold and Tellurium in Bauxite from Vezhayu–Vorykva Deposit (Middle Timan), Vestn. IG Komi NTs UrO RAN, 2011, no. 7, pp. 23–25.
14. Chanturia, V.А., The Role of Innovative Technologies for Dressing and Deep Processing of Minerals in the Development of Mineral Resource Base of Russia. Current Problems of Comprehensive and Deep Processing of Natural and Unconventional Minerals, Proc. Int. Conf. Plaksin’s Lectures–2023, Moscow: Sputnik+, 2023.
15. Razmyslov, I.N., Kotova, О.B., Silaev, V.I., Rostovtsev, V.I., Kiseleva, D.V., and Kondrat’ev, S.А., Microphase Heterogenization of High-Iron Bauxite as a Result of Thermal Radiation, Journal of Mining Science, 2019, vol. 55, no. 5, pp. 811–823.
16. Vakhrushev, А.V., Kristallokhimiya mineralov boksitov Vezhayu-Vorykvinskogo mestorozhdeniya. Struktura, veshchestvo, istoriya litosfery Timano-Severoural’skogo segmenta (Crystal Chemistry of Bauxite Minerals from Vezhayu–Vorykva Deposit. Structure, Substance, History of the Lithosphere of Timan-Northern Urals Segment), Syktyvkar: Geoprint, 2012.
17. Vakhrushev, А.V., Lyutoev, V.P., and Silaev, V.I., Crystal Chemical Features of Ferruginous Minerals in Bauxite from Vezhayu–Vorykva Deposit (Middle Timan), Vestn. IG Komi NTs UrO RAN, 2012, no. 10, pp. 14–18.
18. Kotova, О.B., Razmyslov, I.N., Rostovtsev, V.I., and Silaev, V.I., Heat-and-Radiation Modification of Ferruginous Bauxite during its Processing, Obogashch. Rud, 2016, no. 4, pp. 16–22.
19. Vakhrushev, А.V., Mineralogical and Processing Features of Finely Dispersed Component of Bauxite from Middle Timan, Cand. Geol. Min. Sci. Thesis, Syktyvkar, 2012.
20. Kondrat’ev, S.A., Rostovtsev, V.I., and Kovalenko, К.А., Ecology-Friendly Technologies for Integrated Processing of Rebellious Ore and Process Waste, Gornyi Zhurnal, 2020, no. 5, pp. 39–46.
21. Plaksin, I.N., Obogashchenie poleznykh iskopaemykh (Mineral Dressing), Moscow: Nauka, 1970.
22. Chanturia, V.A. and Vigdergauz, V.Е., Scientific Foundations and Prospects for the Industrial Use of Accelerated Electron Energy in Beneficiation, Gornyi Zhurnal, 1995, no. 7, pp. 53–57.
23. Kondrat’ev, S.A., Rostovtsev, V.I., and Baksheeva, I.I., Strength Research of Rock Cores after High-Energy Electron Beam Irradiation, Journal of Mining Science, 2016, vol. 52, no. 4, pp. 802–809.
24. Rostovtsev, V.I., Ways of Increasing Recovery of Micro- and Nano-Size Valuable Particles from Natural Mineral and Waste, Journal of Mining Science, 2021, vol. 57, no. 4, pp. 654–662.
25. Levin, I. and Brandon, D., Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, J. Am. Ceram. Soc., 1998, vol. 81, pp. 1995–2012.
26. Wilson, S.J. and McConnell, J.D.C., A Kinetic Study of the System ?-AlOOH / Al2O3, J. Solid State Chemistry, 1980, vol. 34, pp. 315–322.
27. Informatsionno-analiticheskie materialy: Mirovye dostizheniya razvitiya metodov, tekhniki i tekhnologii pererabotki mineral’nogo syr’ya. Seriya: Obogashchenie mineral’nogo syr’ya (Information and Analytical Materials: World Achievements in the Development of Techniques, Equipment and Technologies for Mineral Processing. Series: Mineral Beneficiation), Moscow: Izd. VIMS, 2020.
28. Nanomineralogiya. Ul’tra- i melkodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy. Ultra- and Microdispersed State of Mineral Matter), Saint Petersburg: Nauka, 2005.


A PRELIMINARY INVESTIGATION OF THE OPERATING VARIABLES IN A LABORATORY KNELSON CONCENTRATOR FOR ENRICHMENT OF CHROMITE ORE
Selcuk Samanli* and Ozan Osmanli

Usak University, Department of Mining Engineering, Usak, 64200 Turkey
*e-mail: selcuk.samanli@usak.edu.tr
ESAN Eczacibasi Industrial Raw Materials Co. Bozuyuk, Turkey

The article describes the experimental studies on the recovery of chromite ore obtained from the Askale-Kop deposit (Erzurum/Turkey) using a laboratory-type KC-MD3 Knelson concentrator. For this purpose, the parameters of pulp feed rate, fluidization water flow rate, pulp solids ratio, bowl speed and particle size were examined as variables in the experimental studies. As a result of the experiments, the maximum Cr2O3 grade was obtained at 54.68% in chromite concentrate at fluidization water flow rate of 12 l/min, pulp feed rate of 1.5 l/min, pulp solids ratio of 20% and bowl speed of 800 rpm. The highest concentrate recovery value (76.85%) was obtained at fluidization water flow rate of 6 l/min, pulp feed rate of 1.5 l/min, pulp solids ratio of 20% and bowl speed of 1080 rpm.

Knelson concentrator, operating parameters, chromite, enrichment, concentrate recovery

DOI: 10.1134/S1062739123060145

REFERENCES
1. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brand, G.C., Da Silva, E.G.P., Portugal, L.A., Dos Reis, P.S., Souza, A.S., and Dos Santos, W.N.L., Box-Behnken Design: An Alternative for the Optimization of Analytical Methods, Anal. Chim. Acta, 2007, vol. 597(2), pp. 179–186.
2. Grieco, G., Pedrotti, M., and Moroni, M., Metamorphic Redistribution of Cr within Chromites and its Influence on Chromite Ore Enrichment, Miner. Eng., 2011, vol. 24 (2), pp. 102–107.
3. Tripathy, S.K. and Murthy, Y.R., Modeling and Optimization of Spiral Concentrator for Separation of Ultrafine Chromite, Powder Technol., 2012, vol. 221, pp. 387–394.
4. Singh, R.K., Dey, S., Mohanta, M.K., and Das, A., Enhancing the Utilization Potential of a Low Grade Chromite Ore through Extensive Physical Separation, Sep. Sci. Technol., 2014, vol. 49, no. 12, pp. 1937–1945.
5. Laplante, A.R., Testing Requirements and Insight for Gravity Gold Circuit Design, Randol Gold&Silver Forum, Vancouver, 2000.
6. Laplante, A.R. and Dunne, R., The Gravity Recoverable Gold Test and Flash Flotation, Proc. 34th Annual Canadian Min. Proc. Operators Conf., McGill University&Newcrest Mining Limited, Ottawa, 2000.
7. Xiao, Z., Laplante, A.R., and Finch, J.A., Quantifying the Content of Gravity Recoverable Platinum Group Minerals in Ore Samples, Miner. Eng., 2009, vol. 22, pp. 304–310.
8. Laplante, A.R., Putz, A., Huang, L., and Vincent, F., Practical Considerations in the Operations of Gravity Gold Circuit, Proc. 26th Annual Meeting of the Canadian Mineral Proc., Ottawa, Canada, 1994.
9. Cicek, T. and Cocen, I., Applicability of Mozley Multigravity Separator (MGS) to Fine Chromite Tailings of Turkish Chromite Concentrating Plants, Miner. Eng., 2002, vol. 15 (1–2), pp. 91–93.
10. Knelson, B. and Jones, R., A New Generation of Knelson Concentrators: A Totally Secure System, Miner. Eng., 1994, vol. 7, no. 2–3, pp. 201–207.
11. Honaker, R. and Das, A., Ultrafine Coal Cleaning Using a Centrifugal Fluidized-Bed Separator, Coal Prep., 2004, vol. 24, no. 1–2, pp. 1–18.
12. Kroll-Rabotin, J.S., Bourgeois, F., and Climent, E., Fluid Dynamics-Based Modeling of the Falcon Concentrator for Ultrafine Particle Beneficiation, Miner. Eng., 2010, vol. 23, no. 4, pp. 313–320.
13. Majumder, A.K. and Barnwal, J.P., Modeling of Enhanced Gravity Concentrators—Present Status, Miner. Process. Extr. Metall. Rev., 2006, vol. 27, no. 1, pp. 61–86.
14. Das, A. and Sarkar, B., Advanced Gravity Concentration of Fine Particles: A Review, Miner. Process. Extr. Metall. Rev, 2018, vol. 39, no. 6, pp. 359–394.
15. Dehaine, Q., Foucaud, Y., Kroll-Rabotin, J.S., and Filippov, L.O., Experimental Investigation into the Kinetics of Falcon UF Concentration: Implications for Fluid Dynamic-Based Modeling, Sep. Purif. Technol., 2019, vol. 215, pp. 590–601.
16. Qiao, C., Hongying, Y., Linlin, T., Zilong, L., Guimin, C., and Jinquan, W., Analysis of the Operating Mechanism of a Knelson Concentrator, Miner. Eng., 2020, vol. 158. 10654.
17. Coulter, T.G. and Subasinghe, K.N., A Mechanistic Approach to Modeling Knelson Concentrators, Miner. Eng., 2005, vol. 1, no. 1, pp. 9–17.
18. Marion, C., Langlois, R., Kokk?l?c, O., Zhou, M., Williams, H., Awais, M., Rowson, N.A., and Waters, K.E., A Design of Experiments Investigation into the Processing of Fine Low Specific Gravity Minerals Using a Laboratory Knelson Concentrator, Miner. Eng., 2019, vol. 135, pp. 139–155.
19. Xiao, Z., Laplante, A.R., Tan, Y.H., and Finch, J.A., Characterizing the Behavior of Platinum Group Minerals in a Grinding Circuit, Miner. Eng., 2021, vol. 166. 106863.
20. Majumder, A.K., Tiwari, V., and Barnwal, J.P., Separation Characteristics of Coal Fines in a Knelson Concentrator—A Hydrodynamic Approach, Coal Prep., 2007, vol. 27, pp. 126–137.
21. Koppalkar, S. and Laplante, A.R., Effect of Operating Variables on Knelson Concentrators: A Pilot-Scale Sudy, Proc. 39th Annual Meeting of Canadian Miner. Proc., Ottawa, 2007.
22. Koppalkar, S., Effect of Operating Variables in Knelson Concentrators: A Pilot-Scale Study, PhD Thesis, McGill University Department of Mining and Materials Engineering, Montreal, Canada, 2009.
23. Fatahi, M.R. and Farzanegan, A., DEM Simulation of Laboratory Knelson Concentrator to Study the Effects of Feed Properties and Operating Parameters, Adv. Powder Technol., 2017, vol. 28, no. 6, pp. 1443–1458.
24. Sen, G.A., Application of Full Factorial Experimental Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator, Miner., 2016, vol. 6, no. 5, pp. 1–11.
25. Sakuhuni, G., Altun, N.E., Klein, B., and Tong, L., A Novel Laboratory Procedure for Predicting Continuous Centrifugal Gravity Concentration Applications: The Gravity Release Analysis, Int. J. Miner. Proc., 2016, vol. 154, pp. 66–74.
26. Abaka-Wood, G.B., Quast, K., Zanina, M., Addai-Mensah, J., and Skinner, W., A Study of the Feasibility of Upgrading Rare Earth Elements Minerals from Iron-Oxide-Silicate Rich Tailings Using Knelson Concentrator and Wilfley Shaking Table, Powder Technol., 2019, vol. 344, pp. 897–913.
27. Chen, Q., Yang, H., Tong, L., Niu, H., Zhang, F., and Chen, G., Research and Application of a Knelson Concentrator: A Review, Miner. Eng., 2020a, vol. 152. 106339.
28. Chen, Q., Yang, H., Tong, L., Liu, Z., Chen, G., and Wang, J., Analysis of the Operating Mechanism of a Knelson Concentrator, Miner. Eng., 2020b, vol. 158, no. 1. 106547.
29. Honaker, R., Das, A., and Nombe, M., Improving the Separation Efficiency of the Knelson Concentrator Using Air Injection, Coal Prep., 2005, vol. 25, no. 2, pp. 99–116.
30. McLeavy, M., Klein, B, and Grewal, I., Knelson Continuous Variable Discharge Concentrator: Analysis of Operating Variables, Int. Heavy Miner. Conf., Fremantle, Western Australia, 2001.
31. Kokkilic, O., Modeling of Concentration on Falcon Centrifugal Gravity Separator, PhD Thesis (Supervisor: Prof. Dr. Neset ACARKAN), Istanbul Technical University, Institute of Sci. and Technol., Istanbul, Turkey, 2011.
32. McLeavy, M., Continuous Centrifugal Concentrator Operation and Control, BA SC, The University of British Colombia, Miner. Proc. Eng., 2005.
33. Oney, O. and Samanli, S., Experimental and Industrial Applications of Knelson Concentrators, Proc. 6th Int. Congress of Min. Mach.&Technol., 2017.
34. Oney, O. and Tanriverdi, M., Optimization and Modeling of Fine Coal Beneficiation by Knelson Concentrator Using Central Composite Design (CCD), J. Ore Dressing, 2012, vol. 14, no. 27, pp. 11–18.
35. Laplante, A.R., Shu, Y., and Marois, J., Experimental Characterization of a Laboratory Centrifugal Separator, Canadian Metallurgical Quarterly, 1996, vol. 35, no. 1, pp. 23–29.
36. Greenwood, M., Langlois, R., and Waters, K.E., The Potential for Dry Processing Using a Knelson Concentrator, Miner. Eng., 2013, vol. 45, pp. 44–46.
37. Ghaffari, A. and Farzanegan, A,. An Investigation on Laboratory Knelson Concentrator Separation Performance: Part 2: Two-Component Feed Separation Modeling, Miner. Eng., 2017, vol. 112, pp. 114–124.
38. Oney, O., Samanli, S., Niedoba, T., Pieta, P., and Surowiak, A., Determination of the Important Operating Variables on Cleaning Fine Coal by Knelson Concentrator and Evaluation of the Performance through Upgrading Curves, Int. J. Coal Preparation and Utilization, 2020, vol. 40, no. 10, pp. 666–678.
39. Kokkilic, O., Langlois, R., and Waters, K.E., A Design of Experiments Investigation into Dry Separation Using a Knelson Concentrator, Miner. Eng., 2015, vol. 72, pp. 73–86.
40. Foucaud, Y., Dehaine, Q., Filippov, L.O., and Filippova, I.V., Application of Falcon Centrifuge as a Cleaner Alternative for Complex Tungsten Ore Processing, Miner., 2019, vol. 9, no. 7, p. 448.
41. Samanli, S., Oney, O., and Osmanli, O., Modeling of Knelson Concentrator Operating Parameters by Using Application of Box-Behnken Experimental Design for Chromite Ore, Journal of Mining Science, 2023, vol. 59, no. 1, pp. 118–126.
42. Kiyak, T., Waste of Orhaneli Chrome Enri?chment Faci?li?ty Enri?chi?ng wi?th Knelson Concentrator, M. Sc. Thesis (Supervisor: Prof. Cengiz KARAGUZEL), Kutahya Dumlupinar University Graduate School of Natural and Applied Sciences Department of Mining Engineering, Afyon, Turkey, 2013.
43. Sayin, Z.E., Bozkurt, B., and Bicer, S., The Effect of Knelson Gravity Concentration on Chromium Recovery from Plant Waste, Acad. J. Sci., 2017, vol. 07, no. 3, pp. 457–468.


THE USE OF FLOTATION AND HIGH-INTENSITY MAGNETIC SEPARATION TO IMPROVE FELDSPAR CONCENTRATE QUALITY
M. M. Ahmed, G. A. Ibrahim, A. M. E. Rizk, and N. A. Mahmoud*

Assiut University, Assiut, Egypt
*e-mail: nour.ashraf@aun.edu.eg

The flotation process and magnetic separation are the most common methods for feldspar beneficiation containing approximately 0.4% Fe2O3 and 0.04% TiO2. A model MIH (13) 111-5 Induced Roll dry high-intensity magnetic separator was used in this investigation to produce high-quality feldspar concentrate, and investigate the effects of magnetic field strength and roll speed on reducing coloring minerals. The best results were obtained at a magnetic field intensity of 16600 Gauss and a roller speed of 24 rpm. A feldspar concentrate containing 0.16% Fe2O3, 0.01% TiO2 and 10.31% alkali minerals (K2O+Na2O) was obtained with a mass recovery of approximately 69.24%. As a result, the products that met the white glaze and ceramic requirements were produced.

Feldspar, iron, titanium, high-intensity magnetic separator, commercial use

DOI: 10.1134/S1062739123060157

REFERENCES
1. Moura, L.C., Andre, F.P., Miceli, H., Neumann, R., and Tavares, L.M., Manufactured Feldspar-Quartz Sand for Glass Industry from Gneiss Quarry Rock Fines Using Dry Rare-Earth Magnetic Separation, Miner. Proc. Extractive Metall. Rev., 2019, vol. 40, no. 5, pp. 333–343.
2. C?nar, M. and Durgut, E., Mineral Beneficiation of Nepheline Syenite with Combination of Dry Magnetic Separation and Flotation Methods, Physicoch. Problems Miner. Proc., 2019, vol. 55, no. 5.
3. Bayat, O., Arslan, V., and Cebeci, Y., Combined Application of Different Collectors in the Floatation Concentration of Turkish Feldspars, Miner. Eng., 2006, vol. 19, no. 1, pp. 98–101.
4. Ahmed, M., Ibrahim, G., Rizk, A., and Mahmoud, N., Reduce the Iron Content in Egyptian Feldspar Ore of Wadi Zirib for Industrial Applications, Int. J. Min. Eng. Miner. Process, 2016, vol. 5, pp. 25–34.
5. El-Taher, A., Elemental Content of Feldspar from Eastern Desert, Egypt, Determined by INAA and XRF, Appl. Radiation Isotopes, 2010, vol. 68, no. 6, pp. 1185–1188.
6. Zhang, Y. Hu, Y., Sun, N., and Runqing, L., Systematic Review of Feldspar Beneficiation and its Comprehensive Application, Miner. Eng., 2018, vol. 128, pp. 141–152.
7. Burat, F., Kokkilic, O., Kangal, O., Gurkan, V., and Celik, M., Quartz-Feldspar Separation for the Glass and Ceramics Industries, Min., Metall. Exploration, 2007, vol. 24, no. 2, pp. 75–80.
8. Mazhari, S.A., Hajalilou, B., and Bea, F., Evaluation of Syenite as Feldspar Source: Piranshahr Pluton, NW of Iran, Natural Res. Res., 2012, vol. 21, no. 2, pp. 279–283.
9. Silva, J.C., Ulsen, C., Bergerman, M.G., and Horta, D.G., Reduction of Fe2O3 Content of Foyaite by Flotation and Magnetic Separation for Ceramics Production, J. Mater. Res. Technol., 2019, vol. 8, no. 5, pp. 4915–4923.
10. Saisinchai, S., Boonpramote, T., and Meechumna, P., Upgrading Feldspar by WHIMS and Flotation Techniques, Eng. J., 2015, vol. 19, no. 4, pp. 83–92.
11. Celik, M., Can, I., and Eren, R., Removal of Titanium Impurities from Feldspar Ores by New Flotation Collectors, Miner. Eng., 1998, vol. 11, no. 12, pp. 1201–1208.
12. Wills, B.A. and Finch, J., Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Butterworth-Heinemann, 2015.
13. Tripathy, S.K., Murthy, Y.R., Singh, V., and Suresh, N., Processing of Ferruginous Chromite Ore by Dry High-Intensity Magnetic Separation, Miner. Proc. Extractive Metall. Rev., 2016, vol. 37, no. 3, pp. 196–210.
14. El-Rehiem, F. and Abd El-Rahman, M., Removal of Coloring Materials from Egyptian Albite Ore, Miner. Proc. Extractive Metall., 2008, vol. 117, no. 3, pp. 171–174.
15. Ahmed, N.A.M., Concentration of Egyptian Feldspar Ore in Wadi Zirib for Industrial Applications, M. Sc. Thesis, Assiut University, Egypt, 2018.
16. Farghaly, M., Beneficiation Process of El-Bahariya Iron Ore, M. Sc Thesis, Assiut University, Egypt, 2002.
17. Abouzeid, A.Z.M. and Negm, A.T.A., Characterization and Beneficiation of an Egyptian Nepheline Syenite Ore, Int. J. Mineralogy, 2014. 128246.
18. Silva, A.C., Carolina, S.D., Sousa, D.N., and Silva, E.M.S., Feldspar Production from Dimension Stone Tailings for Application in the Ceramic Industry, J. Mater. Res. Technol., 2019, vol. 8, no. 1, pp. 1–7.


COPPER LEACHING USING MIXED EXPLOSIVE-AND-REAGENT PRETREATMENT OF ORE BODY
A. V. Rasskazova*, A. G. Sekisov**, and A. A. Galim’yanov***

Institute of Mining, Far East Branch, Russian Academy of Sciences, Khabarovsk, 680000 Russia
*e-mail: annbot87@mail.ru
**e-mail: sekisovag@mail.ru
***e-mail: azot-1977@mail.ru

The mixed explosive-and-reagent effect exerted on a cemented mineral mass, which simulated an ore body, by explosive charges arranged in reagent solutions was investigated. Pretreatment of the model material by explosive injection of different reagent systems leads to pre-oxidation of copper contained in the material, which stimulates its subsequent leaching. The maximal increment in copper recovery in pregnant solution reached 83% relative to the check value. For the pre-oxidation of copper contained in the model material, the mixed explosive-and-reagent treatment used: electrically activated solution sodium bicarbonate and peroxide, mixture of sodium hydroxide and peroxide, sodium hypochlorite and distilled water. The complexing agent in copper leaching was agent Jin Chan in standard and activated states. It is found that activation of solutions using electrochemically treated sodium bicarbonate before adding the complexing agent enables higher effective recovery of copper from model materials after mixed explosive-and-reagent injection preparation.

Copper, ore body model, mixed explosive-and-reagent effect, process solution, leaching

DOI: 10.1134/S1062739123060169

REFERENCES
1. Sekisov, А.G., Shevchenko, Yu.S., and Lavrov, А.Yu., Explosive-and-Reagent Injection Preparation of Ore for Leaching, All-Russian Conf. on Fundamental Problems of Technogenic Geo Environment Formation, 2012.
2. Mosinets, V.N., Lobanov, D.P., Tadeev, M.N. et al., Stroitel’stvo i ekspluatatsiya rudnikov podzemnogo vyshchelachivaniya (Construction and Operation of Underground Leaching Mines), Moscow: Nedra, 1987.
3. Xie, H., Mao, Zh., Xiao, D., and Liu, J., Rapid Detection of Copper Ore Grade Based on Visible-Infrared Spectroscopy and TSVD-IVTELM, Measurement, 2022, vol. 203. — 112003.
4. Bahamondez, C., Castro, R., Vargas, T., and Arancibia, E., In Situ Mining through Leaching: Experimental Methodology for Evaluating its Implementation and Economic Considerations, J. Southern African Institute Min. and Metallurgy, 2016, vol. 116, no. 7, pp. 689–698.
5. Parra, H., Onederra, I., Michaux, S. et al., A Study of the Impact of Blast Induced Conditioning on Leaching Performance, Miner. Eng., 2015, vol. 74, pp. 1–12.
6. Onederra, I.A., Furtney, J.K., Sellers, E., and Iverson, S., Modeling Blast Induced Damage from a Fully Coupled Explosive Charge, Int. J. Rock Mech. and Min. Sci., 2013, vol. 58, pp. 73–84.
7. Ouchterlony, F., Bergman, P., and Nyberg, U., Fragmentation in Production Rounds and Mill Throughput in the Aitik Copper Mine: A Summary of Development Projects 2002 – 2009, Rock Fragmentation by Blasting, Pradeep, K. Singh & Amalendu Sinha (eds.), Central Institute of Mining and Fuel Research, Dhanbad, India, 2012.
8. Kinyua, E.M., Jianhua, Zh., Kasomo, R.M., Mauti, D., and Mwangangi, J., A Review of the Influence of Blast Fragmentation on Downstream Processing of Metal Ores, Miner. Eng., 2022, vol. 186. 107743.
9. Berezin, I.G., Bragin, P.A., Gorinov, S.A., and Maslov, I.Yu., RF patent no. 660862, Byull. Izobret., 2018, no. 19.
10. Edgar, J.O., Gould, J.A., Badreshany, K., and Telling, J., Mechanochemical Generation of Perchlorate, Icarus., 2022, vol. 387, no. 15. — 115202.
11. Turker, L., Thermobaric and Enhanced Blast Explosives (TBX and EBX), Defense Technology, 2016, vol. 12, no. 6, pp. 423–445.
12. Kranz, R.L., Microcracks in Rocks: A Review, Tectonophysics, 1983, vol. 100, no. 1–3, pp. 449–480.
13. Anders, M.H., Laubach, S.E., and Schol, Ch.H., Microfractures: A review, J. Structural Geology, 2014, vol. 69, pp. 377–378.
14. Permadi, P., Marhaendrajana, T., Nandya, S., and Idea, Kh., Identification and Characterization of Microfractures in Carbonate Samples, Petroleum Exploration and Development, 2022, vol. 49, no. 2, pp. 415–427.
15. Talovina, I.V., Aleksandrova, Т.N., Popov, О., and Libervirt, Ch., Comparative Analysis of Studying Structural and Textural Characteristics of Rocks Using Computer X-Ray Microtomography and Quantitative Microstructural Analysis, Obogashch. Rud, 2017, no. 3 (369), pp. 56–62.
16. Aleksandrova, Т.N., Gurman, М.А., and Kondrat’ev, S.A., Some Approaches to Gold Extraction from Rebellious Ores on the South of Russia’s Far East, Journal of Mining Science, 2011, vol. 47, no. 5, pp. 684–694.
17. Bespal’ko, А.А., Yavorovich, L.V., Eremenko, А.А., and Shtirts, V.A., Electromagnetic Emission of Rocks after Large-Scale Blasts, Journal of Mining Science, 2018, vol. 54, no. 2, pp. 187–193.
18. Aleksandrova, Т.N., Comprehensive and Deep Processing of Minerals of Natural and Man-Made Origin: Status and Prospects, Zapiski gornogo instituta, 2022, no. 256, pp. 503–504.
19. Sekisov, A. and Rasskazova, A., Assessment of the Possibility of Hydrometallurgical Processing of Low-Grade Ores in the Oxidation Zone of the Malmyzh Cu-Au Porphyry Deposit, Minerals, 2021, vol. 11, no. 1, pp. 1–11.
20. Afflerbach, S., Pritzel, Ch., Hartwich, P. et al., Effects of Thermal Treatment on the Mechanical Properties, Microstructure and Phase Composition of an Ettringite Rich Cement, Cement, 2023, vol. 11. — 100058.
21. Jin Chan: Environmental-Friendly Gold Dressing Agent. Available at: http://www.gxshgk.com/senhe_en/ index.php/content/index/pid/15.html (application date March 16, 2023).
22. Beyuo, M., Abaka-Wood, G.B., Asamoah, R.K., et al., A Comparative Study of Sodium Cyanide and Jin Chan Leaching Reagents: А Сase Study at Goldfields Ghana Limited, Proc. 4th UMaT Biennial Int. Min. and Miner. Conf., 2018.
23. Gui, Q., Fu, L., Hu, Y., et al., Gold Extraction Using Alternatives to Cyanide: Ultrasonic Reinforcement and its Leaching Kinetics, Miner. Eng., 2023, vol. 191. 107939.
24. Guo, X.Y., Liu, Z.W., Tian, Q.H. et al., Gold Extraction from Carlin-Type Concentrate by a Novel Environmentally Friendly Lixiviant, Hydrometallurgy, 2022, vol. 211. 105884.
25. Zhang, Y., Cui, M., Wang, J. et al., A Review of Gold Extraction Using Alternatives to Cyanide: Focus on Current Status and Future Prospects of the Novel Eco-Friendly Synthetic Gold Lixiviants, Miner. Eng., 2022, vol. 176. 107336.
26. Kurkov, А.V., Anufrieva, S.I., Sokolova, V.N. et al., Informatsionno-analiticheskie materialy: Mirovye dostizheniya razvitiya metodov, tekhniki i tekhnologii pererabotki mineral’nogo syr’ya. Seriya: Gidrometallurgicheskaya i geotekhnologicheskaya pererabotka mineral’nogo syr’ya (Information and Analytical Materials: World Achievements in the Development of Methods, Equipment and Technologies for Processing Mineral Raw Materials. Series: Hydrometallurgical and Geotechnological Processing of Minerals), Moscow: Izd. VIMS, 2020.
27. Dement’ev, V.E., Druzhina, G.Ya., and Gudkov, S.S., Kuchnoe vyshchelachivanie zolota i serebra (Heap Leaching of Gold and Silver), Irkutsk: Irgiredmet, 2004.
28. Tabbi, G., Giuffrida, A., and Bonomo, R.P., Determination of Formal Redox Potentials in Aqueous Solution of Copper(II) Complexes with Ligands Having Nitrogen and Oxygen Donor Atoms and Comparison with their EPR and UV–Vis Spectral Features, J. Inorg Biochem., 2013, vol. 128, pp. 137–145.
29. Drogowska, M., Brossard, L., and Menard, H., Copper Dissolution in NaHCO3 and NaHCO3 + NaCl Aqueous Solutions at pH 8, J. Electrochem. Soc., 1992, vol. 139, p. 39.
30. Hamidah, I., Solehudin, A., Hamdani, A. et al., Corrosion of Copper Alloys in KOH, NaOH, NaCl, and HCl Electrolyte Solutions and its Impact to the Mechanical Properties, Alexandria Eng. J., 2021, vol. 60, no. 2, pp. 2235–2243.
31. Luo, W., Xu, Y., and Yan, M., Effect of Grain Size on Corrosion of Nanocrystalline Copper in NaOH Solution, Corrosion Sci., 2010, vol. 52, no. 10, pp. 3509–3513.
32. Gurman, M.A., Shcherbak, L.I., and Rasskazova, A.V., Gold and Arsenic Recovery from Calcinates of Rebellious Pyrite–Arsenopyrite Concentrates, Journal of Mining Science, 2015, vol. 51, no 3, pp. 586–590.
33. Wang, H., Wang, Zh., Wang, J. et al., Effect of Confining Pressure on Damage Accumulation of Rock under Repeated Blast Loading, Int. J. Impact Eng., 2021, vol. 156. 103961.


GEOINFORMATION SCIENCE


APPLICATION OF NEURAL NETWORKS IN ROCK MASS STRESS ASSESSMENT BY PHOTOELASTICITY
S. A. Neverov*, A. A. Neverov, A. I. Konurin, M. A. Adylkanova, and D. V. Orlov

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: nsa_nsk@mail.ru
D. Serikbaev East Kazakhstan Technical University,
Ust-Kamenogorsk, 070004 Kazakhstan

The optical polarization method with ring-shaped photoelastic sensors, digital photography of isochromatic patterns and their clarification using neural networks is developed for the stress measurement in rock mass. The case-studies of the photoelasticity application in solving various problems of elasticity and rock pressure analysis are reviewed. As a result of a lab-scale experiment, a data set of 15000 isochromatic images is collected. The machine learning algorithm was a convolutional neural network, the Inception module. The authors recommend using downhole sensors for the continuous stress monitoring in underground mines and integrating the obtained data in a digital model with the help of IoT.

Photoelasticity, optical pattern, isochromatic curves, contour lines, modeling, sensor, experiment, borehole, stress–strain behavior, rock mass, neural networks, geomechanical data

DOI: 10.1134/S1062739123060170

REFERENCES
1. Zhang, Q.Y., Zhang, Y., Duan, K., Liu, C.C., Miao, Y.S., and Wu, D., Large-Scale Geo-Mechanical Model Tests for the Stability Assessment of Deep Underground Complex under Truetriaxial Stress, Tunnel. Underground Space Technol., 2019, vol. 83, pp. 577–591.
2. Holmoy, K.H. and Nilsen, B., Significance of Geological Parameters for Predicting Water Inflow in Hard Rock Tunnels, J. Rock. Mech. Rock. Eng., 2014, vol. 47, pp. 853–868.
3. Li, X., Gong, F., Tao, M., Dong, L., Du, K., Ma, C., Zhou, Z., and Yin, T., Failure Mechanism and Coupled Static-Dynamic Loading Theory in Deep Hard Rock Mining: A Review, J. Rock Mech. Geotech. Eng., 2017, vol. 9, pp. 767–782.
4. Liu, R., Liu, Y., Xin, D., Li, S., Zheng, Z., Ma, C., and Zhang, C., Prediction of Water Inflow in Subsea Tunnels under Blasting Vibration, Water (Switzerland), 2018, vol. 10, no. 10. — 1336.
5. Dammyra, O., Nilsena, B., and Golleggerb, J., Feasibility of Tunnel Boring through Weakness Zones in Deep Norwegian Subsea Tunnels, Tunnel. Underground Space Technol., 2017, vol. 69, pp. 133–146.
6. Biryuchev, I.V., Makarov, А.B., and Usov, А.А., Geomechanical Model of a Mine. Part I. Creation, Gornyi Zhurnal, 2020, no. 1, pp. 42–48.
7. Konurin, А.I., Neverov, S.А., Neverov, А.А., and Shchukin, S.А., The Problem of Numerical Modeling of Stress-Strain State and Stability of a Fractured Rock Mass, Fund. Prikl. Vopr. Gorn. Nauk, 2019, vol. 6, no. 2, pp. 144–150.
8. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part I: Modern Concept of the Stress State versus Depth, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 249–259.
9. Leont’ev, А.V., Rubtsova, Е.V., Lekontsev, Yu.М., and Kachal’sky, V.G., Measuring-Computing Complex “Gidrorazryv”, Journal of Mining Science, 2010, vol. 46, no. 1, pp. 89–94.
10. Leont’ev, А.V., Makarov, А.B., and Tarasov, А.Yu., In Situ Stress State Assessment in the Nurkazgan Mine, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 550–556.
11. Kurlenya, М.V., Baryshnikov, V.D., Baryshnikov, D.V., Gakhova, L.N., Kachal’sky, V.G., and Khmelinin, A.P., Development and Improvement of Borehole Methods for Estimating and Monitoring Stress-Strain Behavior of Engineering Facilities in Mines, Journal of Mining Science, 2019, vol. 55, no. 4, pp. 682–694.
12. Golovin, S.А. and Gusev, К.V., Criterion for the Qualitative Difference between Industry 3.0 and Industry 4.0, Standarty i Kachestvo, 2022, no. 4, pp. 96–100.
13. Zhang, X., Nguyen, H., Bui, X.N., Le, H.A., Nguyen-Thoi, T., Moayedi, H., and Mahesh, V., Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization, Tunnel. Underground Space Technol., 2020, vol. 103. 103517.
14. Pu, Y., Apel, D., Liu, W., and Mitri, H., Machine Learning Methods for Rockburst Prediction-State-of-the-Art Review, Int. J. Min. Sci. Technol., 2019, vol. 29, pp. 565–570.
15. Duan, Y., Shen, Y., Canbulat, I., and Si, G., Classification of Clustered Microseismic Events in a Coal Mine Using Machine Learning, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1256–1273.
16. Jinqiang, W., Basnet, P., and Mahtab, S., Review of Machine Learning and Deep Learning Application in Mine Microseismic Event Classification, Min. Miner. Deposits, 2021, vol. 15, pp. 19–26.
17. Bhatawdekar, R., Nguyen, H., Rostami, J., Bui, X., Jahed Armaghani, D., Ragam, P., and Mohamad, E., Prediction of Flyrock Distance Induced by mine Blasting Using a Novel Harris Hawks Optimization-Based Multi-Layer Perceptron Neural Network, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1413–1427.
18. Isleyen, E., Duzgun, S., and Carter, R., Interpretable Deep Learning for Roof Fall Hazard Detection in Underground Mines, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1246–1255.
19. Kulakov, G.I. and Schastlivtsev, Е.L., Skvazhinnye kol’tsevye fotouprugie datchiki (Downhole Ring-Shaped Photoelastic Sensors), Kemerovo: IUiU SO RAN, 2007.
20. Khaimova-Malkova, R.I., Metodika issledovaniya napryazhenii polyarizatsionno-opticheskim metodom (Procedure for Studying Stresses Using Optical Polarization), Moscow: Nauka, 1970.
21. Filatov, N.А., Belyakov, V.D., and Ievlev, G.А., Fotouprugost’ v gornoi geomekhanike (Photoelasticity in Rock Geomechanics), Moscow: Nedra, 1975.
22. Trumbachev, V.F. and Slavin, О.К., Metodika modelirovaniya massiva gornykh porod metodami fotomekhaniki. Ch. I–II. (Procedure for Modeling Rock Mass by Photomechanical Methods. Parts I–II), Moscow: IGD im. Skochinskogo, 1975.
23. Ju, Y., Ren, Z., Mao, L., and Chiang, F.P., Quantitative Visualization of the Continuous Whole-Field Stress Evolution in Complex Pore Structures Using Photoelastic Testing and 3D Printing Methods, Optics Express, 2018, vol. 26, no. 5, pp. 6182–6201.
24. Guo, J., Zhu, B., Liu, X., Luo, J., and Li, Z., Study on the Geo-Stress Loading and Excavation Unloading Devices of the Large-Scale Photoelastic Model Test for Deep-Buried Tunnels, Hindawi, Shock and Vibration, 2021. 1939505.
25. Adelfar, M., Tavangar, R., Horandghadim, N., and Khalil-Allafi, J., Evaluating Superelastic and Shape Memory Effects Using the Photostress Technique, Materials Today Communications, 2020, vol. 23. 101156.
26. Asai, K., Yoshida, S., Yamada, A., Matsuoka, J., Errapart, A., and Kurkjian, C.R., Micro-Photoelastic Evaluation of Indentation-Induced Stress in Glass, Materials Transactions, 2019, vol. 60, no. 8, pp. 1423–1427.
27. Ju, Y., Ren, Z., Mao, L., and Chiang, F.P. Quantitative visualization of the continuous whole-field stress evolution in complex pore structures using photoelastic testing and 3D printing methods, Optics Express, 2018, Vol. 26, No. 5. pp. 6182–6201.
28. Wang, Y., Zheng, G., and Wang, X., Development and Application of a Goafsafety Monitoring System Using Multi-Sensor Information Fusion, Tunnel. Underground Space Technol., 2019, vol. 94. 103112.
29. Konurin, A., Neverov, S., Neverov, A., Orlov, D., Zharov, I., and Konurina, M., Application of Artificial Neural Networks for Stress State Analysis Based on the Photoelastic Method, Geohazard Mechanics, 2023, vol. 1, no. 2, pp. 128–139.
30. Nesterenko, G.T., Tverdovsky, R.К., and Artemov, R.P., Improvement of Unloading Method for Stress Determination in Hard Fractured Rocks, Trudy VNIMI, 1966, no. 62, pp. 169–182.
31. Famin, L.B., Installation for Experimental Determination of Changes—Stress State of a Coal Seam in Bottomhole Area, Tekhnologiya i ekonomika ugledobychi, 1960, no. 4, pp. 70–73.
32. Hiramatsu, Y., Measurement of Variation in Stress with а Photoelastic Stressmeter, Kyoto, 1964.
33. Barron, K., Class Insert Stressmeters, Trans. Am. Inst. Min. Metall. Eng., 1965, vol. 235, pp. 287–299.
34. Hawkes, I. and Fellers, G.E., Theory оf the Determination of Greatest Principal Stress in a Biaxial Stress Field Using Photoelastic Hollow Cylinder Inclusions, Int. J. Rock Mech. Min. Sci., 1969, vol. 6, pp. 143–158.
35. Shrepp, B.V., Boyarkin, V.I., and Svechnikov, V.F., Izuchenie napryazhennogo massiva s ispol’zovaniem fotouprugikh tenzometrov i opticheskikh datchikov. Izmerenie napryazhenii v massive gornykh porod (Study of a Stressed Rock Mass Using Photoelastic Strain Gauges and Optical Sensors. Stress Measurement in a Rock Mass), Novosibirsk: IGD SO AN SSSR, 1972.
36. Gritsko, G.I., Senuk, D.P., and Kulakov, G.I., Measuring Stresses in a Hereditary-Elastic Medium by Means of Photoelastic Sensors, Journal of Mining Science, 1970, vol. 6, no. 3, pp. 330–332.
37. Kulakov, G.I., Use of Photoelastic Indicators in the Complete Relief Method, Journal of Mining Science, 1980, vol. 16, no. 5, pp. 484–488.
38. Kurlenya, M.V., Guzhova, S.V., and Kulakov, G.I., Zhestkie datchiki napryazhenii dlya geomekhanicheskikh izmerenii (Rigid Stress Gauges for Geomechanical Measurements), Novosibirsk: Nauka, 1990.
39. Guzhova, S.V., Development of Methods for Measuring Total Stresses in Rock Masses and in Tubing Supports Using Photoelastic Sensors, Cand. Tech. Sci. Thesis, Novosibirsk, 2003.
40. Galushkin, А.I., Neironnye seti: osnovy teorii (Neural Networks: Basic Theory), Moscow: RiS, 2014.
41. Wu, H., Global Stability Analysis of a General Class of Discontinuous Neural Networks with Linear Growth Activation Functions, Information Sciences, 2009, vol. 179, no. 19, pp. 3432–3441.
42. Kashirina, I.L. and Demchenko, М.V., Study and Comparative Analysis of Optimization Methods Used in Neural Networks Learning, Vestn. VGU. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2018, no. 4, pp. 123–132.


THE USE OF GEOSPATIAL DATA IN THE INDUSTRIALLY DISTURBED LAND EVALUATION
N. S. Kosarev, A. A. Kolesnikov, A. V. Reznik, N. A. Nemova*, and D. S. Ozhogin

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: nemova-nataly@mail.ru
Siberian State University of Geosystems and Geotechnologies,
Novosibirsk, 630108 Russia
Abylkas Saginov Technical University,
Karaganda, 100027 Kazakhstan

The authors propose a sequence of acquisition and interpretation of geospatial data obtained using different methods and means during mineral mining toward the accuracy increase in evaluation of industrially disturbed land. This approach uses the concept of stage-wise transition from the areas of industrial facilities to their individual points. The integration of data of satellite surveys, ground-based laser scanning and unmanned aerial surveillance in the digital models of land areas is described. It is highlighted that the rational combination of different methods of geospatial data acquisition and interpretation produces a high-accurate geoinformation system of digital twins of various subsoil use facilities.

Industrially disturbed land, mineral mining, spatial data, unmanned aircraft system, laser scanning, geoinformation system

DOI: 10.1134/S1062739123060182

REFERENCES
1. Nikulina. I.Е. and Khomenko, I.V., System-Forming Factors in the Development of Regional Socio-Economic Complex, Regional’naya ekonomika: teoriya i praktika, 2009, no. 20, pp. 20–26.
2. Zen’kov, I.V., Tekhnologii rekul’tivatsii zemel’ i formirovaniya arkhitektury tekhnogennykh landshaftov dlya predpriyatii gornodobyvayushchei promyshlennosti s otkrytymi gornymi rabotami (Technologies for Land Reclamation and Formation of Man-Made Landscape Architecture for Enterprises Engaged in Open-Pit Mining), Krasnoyarsk: SFU, 2022.
3. Basova, I.A., Prokhorov, D.O., Pyankov, S.V., and Trubina, L.K., Monitoring of Lands Occupied by Man-Made Mineral Formations, Vestn. SGUGiT, 2022, vol. 27, no. 4, pp. 138–149.
4. Sokolov, E.М., Kachurin, N.М., and Melekhova, N.I., Reclamation of Mine Dumps in the Moscow Region, Izv. TulGU. Nauki o Zemle, 2010, no. 1, pp. 102–105.
5. Arkhipova, Yu.А. and Bubnova, М.B., Monitoring and Assessment of the Environmental Impact Caused by Mining Activity in the Russian Far East, Ekologicheskie sistemy i pribory, 2019, no. 6, pp. 3–8.
6. Akulova, Е.А. and Titov, М.О., Methods for Obtaining Geospatial Data in Modern Conditions, Gornyi Zhurnal, 2017, no. 6, pp. 79–86.
7. Ostapenko, S.P. and Mesyats, S.P., Recovery Dynamics of Mining-Altered Natural Ecosystems by Satellite Data, Journal of Mining Science, 2022, vol. 58, no. 5, pp. 839–848.
8. Ozhygin, D., Safar, V., Dorokhov, D., Ozhygina, S., Ozhygin, S., and Stankova, H., Terrestrial Photogrammetry at the Quarry and Validating the Accuracy of Slope Models for Monitoring their Stability, IOP Conf. Series: Earth Env. Sci., 2021, vol. 906, no. 1. 012062.
9. Labant, S., Bindzarova Gergelova, M., Kuzevicova, Z., Kuzevic, S., Fedorko, G., and Molnar, V., Utilization of Geodetic Methods Results in Small Open-Pit Mine Conditions: A Case Study from Slovakia, Minerals, 2020, vol. 10, p. 489.
10. Ruan, S., Liu, D., Gu, Q., and Jing, Y., An Intelligent Detection Method for Open-Pit Slope Fracture Based on the Improved Mask R-CNN, Journal of Mining Science, 2022, vol. 58, no. 6, pp. 503–518.
11. Seredovich, V.А., Komissarov, А.V., Komissarov, D.V., and Shirokova, Т.А., Nazemnoe lazernoe skanirovanie (Terrestrial Laser Scanning), Novosibirsk: SGGA, 2009.
12. Schmitz, B., Holst, C., Medic, T., Lichti, D., and Kuhlmann, H., How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners, Sensors, 2019, vol. 19, p. 1466.
13. Kekec, B., Bilim, N., Karakaya, E., and Ghiloufi, D., Applications of Terrestrial Laser Scanning (TLS) in Mining: A Review, Turkiye Lidar Dergisi, 2021, vol. 3, no. 1, pp. 31–38.
14. Nurmukhametov, А.L., Sidorchuk, D.S., Konovalenko, I.А., Nikonorov, А.V., and Gracheva, М.А., Spectral Harmonization of UAV and Satellite Imagery Data for High-Precision Farming, Informatsionnye Protsessy, 2022, vol. 22, no. 4, pp. 335–346.
15. Gavrilov, V.N., Nemova, N.А., Reznik, А.V., Kosarev, N.S., and Kolesnikov, А.А., About the Need for a Comprehensive Geoecological Assessment of Lands Disturbed by Mining, Izv. TPU. Inzhiniring georesursov, 2023, no. 10, pp. 76–87.
16. Nagovitsyn, О.V. and Stepacheva, А.V., Digital Twin of Solid Mineral Deposit, Journal of Mining Science, 2021, vol. 57, no. 6, pp. 1033–1040.
17. Voskoboinikova, А.А., Development of Architecture for Integration of Several Information Systems, Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy, 2009, vol. 4, no. 3 (40), pp. 12–15.
18. Novoselova, О.V., Volkova, G.D., and Gavrilov, А.G., Modeling Integrated Environment to Support the Creation of Applied Automated Systems, Izv. Vuzov. Povolzhskii region. Tekhnicheskie nauki, 2014, no. 1, pp. 81–91.
19. Reznik, A.V., Gavrilov, V.L., Nemova, N.A., Kosarev, N.S., and Kolesnikov, A.A., RF patent no. 2806406, Byull. Izobret., 2023.
20. Kolesnikov, A.A., Kosarev, N.S., Nemova, N.A., Reznik, A.V., and Platonov, Т.А., Compilation of Database of Industrially Disturbed Territories in the Novosibirsk Region, Vestn. SGUGiT, 2023, vol. 31, no. 5, pp. 80–92.
21. Gavrilov, V.L., Nemova, N.A., Reznik, A.V., Kosarev, N.S., Smyk, M.I., and Medvedeva, К.Е., On Disturbance of Lands when Developing SME in the Eastern Part of the Novosibirsk Region, Fund. Prikl. Vopr. Gorn. Nauk, 2022, vol. 9, no. 1, pp. 69–78.


MINING ECOLOGY AND SUBSOIL MANAGEMENT


COAL INDUSTRY OF EASTERN RUSSIA: CURRENT SITUATION AND DEVELOPMENT TRENDS
V. L. Gavrilov* and S. M. Tkach**

Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, 630091 Russia
*e-mail: gvlugorsk@mail.ru
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences,
Yakutsk, 677980 Russia
**e-mail: tkach@igds.ysn.ru

The features and trends of coal mining in the east of Russia are examined. The current and planned managerial decisions connected with coal production and supplies to competitive markets are analyzed. The coal products are ROM fuel, concentrate and middlings. The authors discuss approaches to effective mining and processing management within the chains of supplies, and to provision of the required quality of solid fuel produced and delivered to customers.

Coal, reserves, Eastern Russia, geotechnology, mining, consumption, ecology, volatile market, quality

DOI: 10.1134/S1062739123060194

REFERENCES
1. Coal Market Update IEA, Int. Energy Agency, 2023. Available at: https://www.iea.org (last visited on September 14, 2023).
2. Novak, А., Russia’s Pivot East in the Energy Policy, Energeticheskaya Politika, 2023, no. 6, pp. 14–19.
3. Petrenko, I.Е., Outcome of the Russian Coal Industry in 2022, Ugol’, 2023, no. 3, pp. 21–33.
4. IEF Outlooks Comparison Report, IEA-IEF-OPEC Symposium on Energy Outlooks, 2023. Available at: https://www.ief.org/events/13th-iea-ief-opec-symposium-on-energy-outlooks (last visited on: March 15, 2023).
5. BP Energy Outlook: 2023 edition, BP Enеrgy Economics. Available at: https://www.bp.com/en/global/corporate/energy-economics.html (last visited on: March 15, 2023).
6. Nalley, S. and LaRose, A., International Energy Outlook 2021 (IEO 2021), U. S. Energy Information Administration, 2021. Available at: https://www.eia.gov/outlooks/ieo/index.php (last visited on: March 15, 2023).
7. Andreoni, V., Drivers of Coal Consumption Changes: A Decomposition Analysis for Chinese Regions, Energy, 2022, vol. 242. 122975. Available at: https://doi.org/10.1016/j.energy.2021.122975.
8. Xolani, S., Riza, D., Balcilar, M., and Gupta, R., On the Pricing Effects of Bitcoin Mining in the Fossil Fuel Market: The Case of Coal, Resources Policy, 2023, vol. 85, part B. 103539.
9. Wang, X., Wang, J., Wang, W., and Zhang, S., International and Chinese Energy Markets: Dynamic Spillover Eeffects, Energy, 2023, vol. 282. 128724.
10. Tsivileva, А.Е. and Golubev, S.S., The Impact of Sanctions on the Work of Coal Industry Enterprises, Ugol’, 2022, no. 8, pp. 84–91.
11. Bukharov, S.V., Klimat: What Awaits Russian Energy Sector and Economy by the Middle of the 21st Century (About New Book by T. Gustafson. Part 1), EKO, 2022, no. 3, pp. 153–177.
12. Sivek, M. and Jirasek, J., Coking Coal—Really a Critical Raw Material of the European Union, Resources Policy, 2023, vol. 83. 103586.
13. Rozhkov, А.А., Prostranstvennoe razvitie ugol’noi otrasli Rossii—vostochnyi vektor (Spatial Development of the Russian Coal Industry—Yhe Eastern Vector), Moscow: Rosinformugol, Redaktsiya zhurnala Ugol’, 2019.
14. Tkach, S.М. and Gavrilov, V.L., About Regularities of Coal Industry Development, Problemy Nedropol’zovaniya, 2019, no. 3, pp. 49–61.
15. Goosen, Е.V., Nikitenko, S.М., Kagan, Е.S., Rada, А.О., and Nikitina, О.I., Transformation of Production Chains in the Coal Industry: Organizational and Technological Aspects, Mining Informational and Analytical Bulletin—GIAB, 2023, no. 3, pp. 163–179.
16. Gavrilov, V.L., Coal Mining Complex in the BAM Area: Status and Development Prospects, InterExpo Geo-Sibir, 2021, vol. 2, no. 3, pp. 144–152.
17. Latypov, Z.G. and Kandalova, Е.B., Gosbalans zapasov poleznykh iskopayemykh Rossiiskoi Federatsii na 01 yanvarya 2022 goda. Ugol’. Sibirskii federal’nyi okrug (State Balance of Mineral Reserves of the Russian Federation as of January 1, 2022. Coal. Siberian Federal District), Moscow: FBGU Rosgeolfond, 2022, iss. 91, vol. 7, part 1.
18. Gusareva, Т.V., Gosbalans zapasov poleznykh iskopayemykh Rossiiskoy Federatsii na 01 yanvarya 2022 goda. Ugol’. Sibirskiu federal’nyi okrug (State Balance of Mineral Reserves of the Russian Federation as of January 1, 2022. Coal. Siberian Federal District), Moscow: FBGU Rosgeolfond, 2022, iss. 91, vol. 7, part 2.
19. Krylov, V.V., Gusareva, Т.V., and Kandalova, Е.B., Gosbalans zapasov poleznykh iskopayemykh Rossiiskoy Federatsii na 01 yanvarya 2022 goda. Ugol’. Dal’nevostochnyi federal’nyi okrug (State Balance of Mineral Reserves of the Russian Federation as of January 1, 2022. Coal. Far Eastern Federal District), Moscow: FBGU Rosgeolfond, 2022, iss. 91, vol. 8.
20. Takaishvili, L., Coal from the Eastern Regions of Russia in Fuel Supply of Power Plants, Energeticheskaya Politika, 2023, no. 3, pp. 24–35.
21. Prokapalo, О.М., Bardal’, А.B., Isaev, А.G., and Mazitova, М.G., Economic Situation in the Far Eastern Federal District in 2022, Prostranstvennaya Ekonomika, 2023, no. 2, pp. 126–168.
22. Spravki o sostoyanii i perspektivakh ispol’zovaniya mineral’no-syr’yevoi bazy Respubliki Sakha (Yakutiya) i Sakhalinskoi oblasti na 15.06.2023 g. FGBU VSEGEI (Reports on the Condition and Prospects for Use of the Mineral Resource Base in the Republic of Sakha (Yakutia) and Sakhalin Region as of June 15, 2023. Federal State Budgetary Institution VSEGEI). Available at: http://atlaspacket.vsegei.ru/#5bf054622fc723b14 (last visited on: July 26, 2023).
23. Yuzhnaya Yakutiya: resursnyi potentsial sotsial’no-ekonomicheskikh kompleksov (South Yakutia: Resource Potential of Socio-Economic Complexes), Ufa: Aeterna, 2019.
24. Rasskazov, I.Yu., Arkhipova, Yu.А., Kryukov, V.G., and Volkov, А.F., Mining Industry in the Russian Far East: Balancing the Interests of Subsoil Use and the State, Journal of Mining Science, 2023, vol. 59, no. 3, pp. 481–489.
25. Mainzer, K., Technological Foresight and Balanced Innovative Development from the Viewpoint of Complex Dynamic Systems, Forsait, 2020, no. 4, pp. 10–19.
26. Smara, R. and Bogatyreva, K.A., Moving to Ambidextrous Organization: A Systematic Literature Review, Vestn. Sankt-Peterb. Univ. Menedzhment, 2023, no. 2, pp. 191–225.
27. Andreeva, Т.Е. and Chaika, V.А., To the Discussion on the Essence of Dynamic Capabilities, Vestn. Sankt-Peterb. Univ. Menedzhment, 2006, no. 4, pp. 163–174.
28. Kilin, А.B., Azev, V.А., Kostarev, А.S., Galkin, V.А., and Makarov, А.М., Development of Regional Coal Mining Production Association Based on a Balanced Enhance in Usefulness of Its Assets, Ugol’, 2023, no. 4, pp. 15–22.
29. Galchenko, Yu.P. and Kalabin, G.V., Bio-System Concept of Technological Innovation in Mining with Implementation of Ecological Imperative, Journal of Mining Science, 2023, vol. 59, no. 5, pp. 152–161.
30. Edelev, А.V., Yurkevich, N.V., Gureev, V.N., and Mazov, N.А., Reclamation of Waste Storage Sites of the Mining Industry in the Russian Federation, Journal of Mining Science, 2022, vol. 58, no. 6, pp. 1053–1068.
31. Gavrilov, V.L. and Tkach, S.М., About Digital Technologies of Mining Enterprises in Conditions of Instability, Uncertainty, Complexity and Ambiguity, Mining Informational and Analytical Bulletin—GIAB, 2019, no. 11 (spec. iss. 37), pp. 112–121.


TIME SERIES FORECASTING OF INDIAN COAL MINES FATAL ACCIDENTS
Abinash Mohanty* and Devidas S. Nimaje**

Department of Mining Engineering, National Institute of Technology Rourkela,
Odisha, 769008 India
*e-mail: abinash.nitian@gmail.com
**e-mail: dsnimaje@nitrkl.ac.in

The present study analyzes the fatal accident occurrences of seventy years from 1951 to 2020 in Indian coal mines. The autoregressive integrated moving average (ARIMA) model, Brown’s double exponential smoothing method, Holt’s double exponential smoothing method, and neural network time series forecasting are used in this research to analyze fatal accidents and forecast future accident incidents. By analyzing various parameters of the applied models, the neural network model was found to be the most appropriate model for the collected data to forecast Indian coal mine accidents as it provides the least root mean squared error (RMSE) (17.62), and mean absolute error (MAE) (13.33) among all models. According to this study, the Neural Network model is the most suitable one to predict Indian coal mine fatality.

Accident forecasting, ARIMA, exponential smoothing, neural network, coal mine

DOI: 10.1134/S1062739123060200

REFERENCES
1. Safety and Health at Work: A Vision for Sustainable Prevention, Geneva, Int. Labor Organization, 2014. Available at: https://www.ilo.org/safework/info/publications/WCMS_301214/langen/index.htm.
2. Jiskani, I.M., Ullah, B., Shah, K.S., Bacha, S., Shahani, N.M., Ali, M., Maqbool, A., and Qureshi, A.R., Overcoming Mine Safety Crisis in Pakistan: An Appraisal, Process Saf. Prog., 2019, vol. 38, no. 4. 12041.
3. Verma, S. and Chaudhari, S., Safety of Workers in Indian Mines: Study, Analysis, and Prediction, Saf. Health Work., 2017, vol. 8, no. 3, pp. 267–275.
4. Amponsah-Tawiah, K., Ntow, M.A.O., and Mensah, J., Occupational Health and Safety Management and Turnover Intention in the Ghanaian Mining Sector, Saf. Health Work., 2016, vol. 7, no. 1, pp. 12–17.
5. Zhang, Y., Jing, L., Bai, Q., Liu, T., and Feng, Y., A Systems Approach to Extraordinarily Major Coal Mine Accidents in China from 1997 to 2011: An Application of the HFACS Approach, Int. J. Occup. Saf. Ergon., 2019, vol. 25, no. 2, pp. 181–193.
6. Mahmoudi, S., Ghasemi, F., Mohammadfam, I., and Soleimani, E., Framework for Continuous Assessment and Improvement of Occupational Health and Safety Issues in Construction Companies, Saf. Health Work., 2014, vol. 5, no. 3, pp. 125–130.
7. Asfaw, A., Mark, C., and Pana-Cryan, R., Profitability and Occupational Injuries in US Underground Coal Mines, Accid. Anal. Prev., 2013, vol. 50, pp. 778–786.
8. Beriha, G.S., Patnaik, B., Mahapatra, S.S., and Padhee, S., Assessment of Safety Performance in Indian Industries Using Fuzzy Approach, Expert Syst. Appl., 2012, vol. 39, no. 3, pp. 3311–3323.
9. Coal’s Contribution. World Coal Association, 2013. Available at: https://www.worldcoal.org/coal-facts/coals-contribution.
10. Mandal, A. and Sengupta, D., The Analysis of Fatal Accidents in Indian Coal Mines, Calcutta Statistical Association Bulletin, 2000, vol. 50, no. 1–2, pp. 95–120.
11. Global Energy Statistical Yearbook, 2020. Available at: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html.
12. Countries with Biggest Coal Reserves, Min. Technol., 2020. Available at: https://www.mining-technology.com/features/feature-the-worlds-biggest-coal-reserves-by-country.
13. Production and Supplies, Ministry of Coal, 2021. Available at: http://www.coal.nic.in/major-statistics/production-and-supplies.
14. Annual Report 2020–2021, Ministry of Mines, Government of India, 2021. Available at: https://mines.gov.in/writereaddata/UploadFile/Mines_AR_2017-18_English_Final%2017052021.pdf.
15. Kher, A.A. and Yerpude, R., Application of Forecasting Models on Indian Coal Mining Fatal Accident (Time Series) Data, Int. J. Appl. Eng. Res., 2016, vol. 11, no. 2, pp. 1533–1537.
16. Ihueze, C.C. and Onwurah, U.O., Road Traffic Accidents Prediction Modeling: An Analysis of Anambra State, Nigeria, Accid. Anal. Prev., 2018, vol. 112, pp. 21–29.
17. Annual Report, Directorate-General of Mines Safety, Ministry of Labor and Employment, Govt. of India, 2005. Available at: https://www.dgms.gov.in/writereaddata/UploadFile/DGMS_AR_ 2005636047833507409750-2005.pdf.
18. Annual Report, Directorate-General of Mines Safety, Ministry of Labor and Employment, Govt. of India, 2014. Available at: https://www.dgms.gov.in/writereaddata/UploadFile/DGMS_ Annual_Report_2014_Eng-14.pdf.
19. DGMS Standard Note, 01.01.2021, Directorate-General of Mines Safety, Ministry of Labor and Employment, Govt. of India, Dhanbad, India.
20. Taneja, K., Ahmad, S., Ahmad, K., and Attri, S.D., Time Series Analysis of Aerosol Optical Depth over New Delhi Using Box–Jenkins ARIMA Modeling Approach, Atmos. Pollut. Res., 2016, vol. 7, no. 4, pp. 585–596.
21. Os, B., Awoeyo, O.O., Akinrefon, A.A., and Yami, A.M., On the Model Selection of Road Accident Data in Nigeria: A Time Series Approach, Am. J. Res. Commun., 2015, vol. 3, no. 5, pp. 139–177.
22. Box, G.E. and Jenkins, G.M., Time Series Analysis: Forecasting and Control, Oakland, CA: Holden Day, 1976.
23. Makkhan, S.J.S., Parmar, K.S., Kaushal, S., and Soni, K., Correlation and Time-Series Analysis of Black Carbon in the Coal Mine Regions of India: A Case Study, Model. Earth Syst. Environ., 2020, vol. 6, no. 2, pp. 659–669.
24. Introduction to Time Series Analysis. NIST/SEMATECH e-Handbook of Statistical Methods. Available at: https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm.
25. Hansun, S., A New Approach of Brown’s Double Exponential Smoothing Method in Time Series Analysis, Balkan J. Electr. Comp. Eng., 2016, vol. 4, no. 2, pp. 75–78.
26. Nazim, A. and Afthanorhan, A., A Comparison between Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), Holt’s (Brown) and Adaptive Response Rate Exponential Smoothing (ARRES) Techniques in Forecasting Malaysia Population, Global J. Mathem. Analysis, 2014, vol. 2, no. 4, pp. 276–280.
27. Fauziah, F.N., Gunaryati, A., Sari, R.T.K., and Titi, R., Comparison Forecasting with Double Exponential Smoothing and Artificial Neural Network to Predict the Price of Sugar, Int. J. Simul. Systems, Sci. Technol., 2017, vol. 18, no. 4, pp. 13–21.